Mikołaj Stańczak, Maciej Biały, Magdalena Hagner-Derengowska
{"title":"Ligament Cell Biology: Effect of Mechanical Loading.","authors":"Mikołaj Stańczak, Maciej Biały, Magdalena Hagner-Derengowska","doi":"10.33594/000000773","DOIUrl":null,"url":null,"abstract":"<p><p>Ligaments are biomechanically specialized connective tissues that maintain joint stability and guide motion under complex loading conditions. At the cellular and molecular levels, ligament homeostasis is governed by fibroblast-like cells (ligamentocytes) embedded in an intricately organized ECM composed predominantly of type I collagen, with contributions from type III collagen, elastin, proteoglycans, and glycoproteins. These cells continuously sense and respond to mechanical stimuli-tension, compression, and shear-through mechanotransduction pathways involving integrins, focal adhesions, cytoskeletal remodeling, and mechanosensitive ion channels. Downstream signaling cascades, including MAPKs and PI3K/AKT, integrate biomechanical cues with growth factor and cytokine signaling to fine-tune gene expression, collagen fibrillogenesis, and ECM turnover. Distinct from tendons, ligaments must adapt to multidirectional loads, resulting in unique ECM compositions and cellular phenotypes. Appropriate mechanical loading maintains collagen alignment, promotes ECM integrity, and stabilizes the ligament cell phenotype. By contrast, insufficient or excessive load alters the molecular balance, triggering catabolic processes, inflammation, and disorganized ECM assembly. This delicate equilibrium also underlies the ligamentization observed in ACL graft remodeling, where controlled mechanical environments and molecular interventions accelerate the acquisition of ligamentous properties. Emerging insights into transcriptional and epigenetic regulation, growth factor-mediated cues, and cytokine-driven responses offer avenues to engineer ligament-like tissues and optimize recovery strategies. By leveraging molecular knowledge of cell-matrix interactions, growth factor profiles, and genetic/epigenetic modulators, clinicians and researchers can design tailored loading protocols, biomimetic scaffolds, and regenerative therapies. These approaches aim to restore ligament functionality, enhance graft integration, and prevent degenerative changes, ultimately improving patient outcomes in ligament injury repair and reconstruction.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 2","pages":"252-295"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ligaments are biomechanically specialized connective tissues that maintain joint stability and guide motion under complex loading conditions. At the cellular and molecular levels, ligament homeostasis is governed by fibroblast-like cells (ligamentocytes) embedded in an intricately organized ECM composed predominantly of type I collagen, with contributions from type III collagen, elastin, proteoglycans, and glycoproteins. These cells continuously sense and respond to mechanical stimuli-tension, compression, and shear-through mechanotransduction pathways involving integrins, focal adhesions, cytoskeletal remodeling, and mechanosensitive ion channels. Downstream signaling cascades, including MAPKs and PI3K/AKT, integrate biomechanical cues with growth factor and cytokine signaling to fine-tune gene expression, collagen fibrillogenesis, and ECM turnover. Distinct from tendons, ligaments must adapt to multidirectional loads, resulting in unique ECM compositions and cellular phenotypes. Appropriate mechanical loading maintains collagen alignment, promotes ECM integrity, and stabilizes the ligament cell phenotype. By contrast, insufficient or excessive load alters the molecular balance, triggering catabolic processes, inflammation, and disorganized ECM assembly. This delicate equilibrium also underlies the ligamentization observed in ACL graft remodeling, where controlled mechanical environments and molecular interventions accelerate the acquisition of ligamentous properties. Emerging insights into transcriptional and epigenetic regulation, growth factor-mediated cues, and cytokine-driven responses offer avenues to engineer ligament-like tissues and optimize recovery strategies. By leveraging molecular knowledge of cell-matrix interactions, growth factor profiles, and genetic/epigenetic modulators, clinicians and researchers can design tailored loading protocols, biomimetic scaffolds, and regenerative therapies. These approaches aim to restore ligament functionality, enhance graft integration, and prevent degenerative changes, ultimately improving patient outcomes in ligament injury repair and reconstruction.
期刊介绍:
Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.