Rustims: An Open-Source Framework for Rapid Development and Processing of timsTOF Data-Dependent Acquisition Data.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2025-05-02 Epub Date: 2025-04-22 DOI:10.1021/acs.jproteome.4c00966
David Teschner, David Gomez-Zepeda, Mateusz K Łącki, Thomas Kemmer, Anne Busch, Stefan Tenzer, Andreas Hildebrandt
{"title":"Rustims: An Open-Source Framework for Rapid Development and Processing of timsTOF Data-Dependent Acquisition Data.","authors":"David Teschner, David Gomez-Zepeda, Mateusz K Łącki, Thomas Kemmer, Anne Busch, Stefan Tenzer, Andreas Hildebrandt","doi":"10.1021/acs.jproteome.4c00966","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is essential for analyzing and quantifying biological samples. The timsTOF platform is a prominent commercial tool for this purpose, particularly in bottom-up acquisition scenarios. The additional ion mobility dimension requires more complex data processing, yet most current software solutions for timsTOF raw data are proprietary or closed-source, limiting integration into custom workflows. We introduce rustims, a framework implementing a flexible toolbox designed for processing timsTOF raw data, currently focusing on data-dependent acquisition (DDA-PASEF). The framework employs a dual-language approach, combining efficient, multithreaded Rust code with an easy-to-use Python interface. This allows for implementations that are fast, intuitive, and easy to integrate. With imspy as its main Python scripting interface and sagepy for Sage search engine bindings, rustims enables fast, integrable, and intuitive processing. We demonstrate its capabilities with a pipeline for DDA-PASEF data including rescoring and integration of third-party tools like the Prosit intensity predictor and an extended ion mobility model. This pipeline supports tryptic proteomics and nontryptic immunopeptidomics data, with benchmark comparisons to FragPipe and PEAKS. Rustims is available on GitHub under the MIT license, with installation packages for multiple platforms on PyPi and all analysis scripts accessible via Zenodo.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 5","pages":"2358-2368"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00966","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry is essential for analyzing and quantifying biological samples. The timsTOF platform is a prominent commercial tool for this purpose, particularly in bottom-up acquisition scenarios. The additional ion mobility dimension requires more complex data processing, yet most current software solutions for timsTOF raw data are proprietary or closed-source, limiting integration into custom workflows. We introduce rustims, a framework implementing a flexible toolbox designed for processing timsTOF raw data, currently focusing on data-dependent acquisition (DDA-PASEF). The framework employs a dual-language approach, combining efficient, multithreaded Rust code with an easy-to-use Python interface. This allows for implementations that are fast, intuitive, and easy to integrate. With imspy as its main Python scripting interface and sagepy for Sage search engine bindings, rustims enables fast, integrable, and intuitive processing. We demonstrate its capabilities with a pipeline for DDA-PASEF data including rescoring and integration of third-party tools like the Prosit intensity predictor and an extended ion mobility model. This pipeline supports tryptic proteomics and nontryptic immunopeptidomics data, with benchmark comparisons to FragPipe and PEAKS. Rustims is available on GitHub under the MIT license, with installation packages for multiple platforms on PyPi and all analysis scripts accessible via Zenodo.

Rustims:一个用于快速开发和处理timsTOF数据相关采集数据的开源框架。
质谱法是分析和定量生物样品的必要手段。timsTOF平台是实现这一目的的一个突出的商业工具,特别是在自下而上的获取场景中。额外的离子迁移率维度需要更复杂的数据处理,但目前大多数用于timsTOF原始数据的软件解决方案都是专有的或闭源的,限制了与自定义工作流的集成。我们介绍rustims,这是一个框架,实现了一个灵活的工具箱,用于处理timsTOF原始数据,目前专注于数据依赖采集(data-dependent acquisition, DDA-PASEF)。该框架采用双语言方法,将高效的多线程Rust代码与易于使用的Python接口相结合。这允许快速、直观和易于集成的实现。使用imspy作为其主要的Python脚本接口,并使用sagepy作为Sage搜索引擎绑定,rustims实现了快速、可集成和直观的处理。我们通过DDA-PASEF数据管道展示了它的功能,包括重新记录和集成第三方工具,如Prosit强度预测器和扩展的离子迁移率模型。该管道支持胰蛋白酶蛋白质组学和非胰蛋白酶免疫肽组学数据,并与FragPipe和PEAKS进行基准比较。在MIT许可下,可以在GitHub上获得Rustims,其安装包适用于PyPi上的多个平台,所有分析脚本都可以通过Zenodo访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信