Juan Xu, Qiqi Zhang, Xinyu Yang, Qiqi Tang, Yitong Han, Jiahui Meng, Jiaqi Zhang, Xin Lu, Danni Wang, Jing Liu, Bo Shan, Xue Bai, Kai Zhang, Longhao Sun, Lingdi Wang, Lu Zhu
{"title":"Mitochondrial GCN5L1 coordinates with YME1L and MICOS to remodel mitochondrial cristae in white adipocytes and modulate obesity.","authors":"Juan Xu, Qiqi Zhang, Xinyu Yang, Qiqi Tang, Yitong Han, Jiahui Meng, Jiaqi Zhang, Xin Lu, Danni Wang, Jing Liu, Bo Shan, Xue Bai, Kai Zhang, Longhao Sun, Lingdi Wang, Lu Zhu","doi":"10.1016/j.celrep.2025.115682","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between mitochondrial architecture and energy homeostasis in adipose tissues is not well understood. In this study, we utilized GCN5L1-knockout mice in white (AKO) and brown (BKO) adipose tissues to examine mitochondrial homeostasis in adipose tissues. GCN5L1, a regulator of mitochondrial metabolism and dynamics, influences resistance to high-fat-diet-induced obesity in AKO but not BKO mice. This resistance is mediated by an increase in mitochondrial cristae that stabilizes oxidative phosphorylation (OXPHOS) complexes and enhances energy expenditure. Our protein-interactome analysis reveals that GCN5L1 is associated with the mitochondrial crista complex MICOS (MIC13) and the protease YME1L, facilitating the degradation of MICOS and disassembly of cristae during obesity. This interaction results in decreased OXPHOS levels and subsequent adipocyte expansion. Accumulation of GCN5L1 in the mitochondrial intermembrane space is triggered by a high-fat diet. Our findings highlight a regulatory pathway involving YME1L/GCN5L1/MIC13 that remodels mitochondrial cristae in WAT in response to overnutrition-induced obesity.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115682"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115682","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The relationship between mitochondrial architecture and energy homeostasis in adipose tissues is not well understood. In this study, we utilized GCN5L1-knockout mice in white (AKO) and brown (BKO) adipose tissues to examine mitochondrial homeostasis in adipose tissues. GCN5L1, a regulator of mitochondrial metabolism and dynamics, influences resistance to high-fat-diet-induced obesity in AKO but not BKO mice. This resistance is mediated by an increase in mitochondrial cristae that stabilizes oxidative phosphorylation (OXPHOS) complexes and enhances energy expenditure. Our protein-interactome analysis reveals that GCN5L1 is associated with the mitochondrial crista complex MICOS (MIC13) and the protease YME1L, facilitating the degradation of MICOS and disassembly of cristae during obesity. This interaction results in decreased OXPHOS levels and subsequent adipocyte expansion. Accumulation of GCN5L1 in the mitochondrial intermembrane space is triggered by a high-fat diet. Our findings highlight a regulatory pathway involving YME1L/GCN5L1/MIC13 that remodels mitochondrial cristae in WAT in response to overnutrition-induced obesity.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.