Elucidating Carrier Dynamics and Interface Engineering in Sb2S3: Towards Efficient Photoanode for Water Oxidation.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-11 DOI:10.1002/cssc.202402764
Sudhanshu Shukla, Irene Dei Tos, Angelica Simbula, Julian Guerrero, Thanh Dong, Sownder Subramaniam, Beatriz de la Fuente, Vishal K Jose, Tom Aernouts, Negar Naghavi, Bart Vermang, Yinghuan Kuang
{"title":"Elucidating Carrier Dynamics and Interface Engineering in Sb2S3: Towards Efficient Photoanode for Water Oxidation.","authors":"Sudhanshu Shukla, Irene Dei Tos, Angelica Simbula, Julian Guerrero, Thanh Dong, Sownder Subramaniam, Beatriz de la Fuente, Vishal K Jose, Tom Aernouts, Negar Naghavi, Bart Vermang, Yinghuan Kuang","doi":"10.1002/cssc.202402764","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugation of low-cost and high-performance semiconductors is essential in solar-driven photoelectrochemical (PEC) energy conversion. Sb2S3 is a wide-bandgap (≈1.7 eV) semiconductor with the potential to deliver a maximum photocurrent density of 24.5 mA cm-2, making it highly attractive for PEC water splitting applications. However, bulk Sb2S3 exhibits intrinsic recombination issues and low electron-hole separation, posing a limit to photocurrent generation. This study clarifies the carrier dynamics by ultrafast spectroscopy measurements and proposes the design of a heterojunction between Sb2S3 and SnO2, with suitable band-edge energy offset. The SnO2/Sb2S3 heterojunction enhances the charge separation efficiency, resulting in improvement of the photocurrent. The SnO2/Sb2S3 photoanode, fabricated entirely by vapor deposition processes, demonstrated photoelectrochemical water oxidation with a photocurrent density up to ca. 3 mA cm-2 at 1.38 V vs RHE.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402764"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402764","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugation of low-cost and high-performance semiconductors is essential in solar-driven photoelectrochemical (PEC) energy conversion. Sb2S3 is a wide-bandgap (≈1.7 eV) semiconductor with the potential to deliver a maximum photocurrent density of 24.5 mA cm-2, making it highly attractive for PEC water splitting applications. However, bulk Sb2S3 exhibits intrinsic recombination issues and low electron-hole separation, posing a limit to photocurrent generation. This study clarifies the carrier dynamics by ultrafast spectroscopy measurements and proposes the design of a heterojunction between Sb2S3 and SnO2, with suitable band-edge energy offset. The SnO2/Sb2S3 heterojunction enhances the charge separation efficiency, resulting in improvement of the photocurrent. The SnO2/Sb2S3 photoanode, fabricated entirely by vapor deposition processes, demonstrated photoelectrochemical water oxidation with a photocurrent density up to ca. 3 mA cm-2 at 1.38 V vs RHE.

Sb2S3的载流子动力学和界面工程研究:迈向水氧化的高效光阳极。
在太阳能驱动的光电化学(PEC)能量转换中,低成本和高性能半导体的共轭是必不可少的。Sb2S3是一种宽带隙(≈1.7 eV)半导体,具有提供24.5 mA cm-2的最大光电流密度的潜力,使其在PEC水分解应用中具有很高的吸引力。然而,块体Sb2S3存在固有的复合问题和低电子空穴分离,限制了光电流的产生。本研究通过超快光谱测量澄清了载流子动力学,并提出了Sb2S3与SnO2之间具有合适带边能量偏移的异质结设计。SnO2/Sb2S3异质结提高了电荷分离效率,从而改善了光电流。完全通过气相沉积工艺制备的SnO2/Sb2S3光阳极在1.38 V vs RHE下具有高达约3 mA cm-2的光电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信