Elina Berntsson, Andra Noormägi, Kärt Padari, Jüri Jarvet, Astrid Gräslund, Margus Pooga, Peep Palumaa, Sebastian K T S Wärmländer
{"title":"Binding of Hg(I) and Hg(II) Ions to Amyloid-Beta (Aβ) Peptide Variants Affect Their Structure and Aggregation.","authors":"Elina Berntsson, Andra Noormägi, Kärt Padari, Jüri Jarvet, Astrid Gräslund, Margus Pooga, Peep Palumaa, Sebastian K T S Wärmländer","doi":"10.1002/cbic.202500252","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury (Hg) exposure is a possible risk factor for Alzheimer´s disease (AD). Some studies reported higher Hg levels in AD patients, but evidence is inconclusive. A mechanism linking Hg exposure to AD neuropathology remains to be found. The hallmark of AD brains is deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides. Here, we use transmission electron microscopy (TEM) and biophysical spectroscopy techniques to study in vitro interactions between inorganic Hg and pathologically relevant Aβ(1-40) and Aβ(4-40) variants and the Aβ(1-40)(H6A, H13A, H14A) mutant. For the first time, effect on Aβ aggregation of both Hg(I) and Hg(II) is compared. Hg(II) binds Aβ(1-40) with apparent binding affinity of 28±8 µM, at 20 °C in 20 mM MES buffer, pH 7.3. The N-terminal His6, His13 and His14 residues are involved in binding coordination. Hg(II) binding induces structural alterations (coil-coil interactions) in Aβ monomers positioned in membrane-mimicking SDS micelles. Equimolar amounts of either Hg(I) or Hg(II) inhibit normal Aβ fibrillation by directing aggregation towards formation of large amorphous aggregates. All these structural rearrangements may be relevant for the harmful Aβ aggregation processes involved in AD brain pathology. Inducing protein misfolding and aggregation might be a general toxic mechanism of mercury.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500252"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500252","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mercury (Hg) exposure is a possible risk factor for Alzheimer´s disease (AD). Some studies reported higher Hg levels in AD patients, but evidence is inconclusive. A mechanism linking Hg exposure to AD neuropathology remains to be found. The hallmark of AD brains is deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides. Here, we use transmission electron microscopy (TEM) and biophysical spectroscopy techniques to study in vitro interactions between inorganic Hg and pathologically relevant Aβ(1-40) and Aβ(4-40) variants and the Aβ(1-40)(H6A, H13A, H14A) mutant. For the first time, effect on Aβ aggregation of both Hg(I) and Hg(II) is compared. Hg(II) binds Aβ(1-40) with apparent binding affinity of 28±8 µM, at 20 °C in 20 mM MES buffer, pH 7.3. The N-terminal His6, His13 and His14 residues are involved in binding coordination. Hg(II) binding induces structural alterations (coil-coil interactions) in Aβ monomers positioned in membrane-mimicking SDS micelles. Equimolar amounts of either Hg(I) or Hg(II) inhibit normal Aβ fibrillation by directing aggregation towards formation of large amorphous aggregates. All these structural rearrangements may be relevant for the harmful Aβ aggregation processes involved in AD brain pathology. Inducing protein misfolding and aggregation might be a general toxic mechanism of mercury.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).