In Silico Studies Show that -OBO Units Bound to Stable Boron Cages in Y B 11 ( O B O ) 12 - $$ \mathbf{Y} {\mathbf{B}}_{11} ( \mathbf{O} \mathbf{B} \mathbf{O} {)}_{12}^{-} $$ (Y = C/Si) Anions Provide a Desirable Borate-Rich Solid Electrolyte Interface in Ca-Ion Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-04-20 DOI:10.1002/cssc.202500154
Abhiruchi Sharma, Puneet Gupta
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">In Silico Studies Show that -OBO Units Bound to Stable Boron Cages in <ns0:math> <ns0:semantics><ns0:mrow><ns0:mi>Y</ns0:mi> <ns0:msub><ns0:mi>B</ns0:mi> <ns0:mn>11</ns0:mn></ns0:msub> <ns0:msubsup><ns0:mrow><ns0:mo>(</ns0:mo> <ns0:mi>O</ns0:mi> <ns0:mi>B</ns0:mi> <ns0:mi>O</ns0:mi> <ns0:mo>)</ns0:mo></ns0:mrow> <ns0:mn>12</ns0:mn> <ns0:mo>-</ns0:mo></ns0:msubsup> </ns0:mrow> <ns0:annotation>$$ \\mathbf{Y} {\\mathbf{B}}_{11} ( \\mathbf{O} \\mathbf{B} \\mathbf{O} {)}_{12}^{-} $$</ns0:annotation></ns0:semantics> </ns0:math> (Y = C/Si) Anions Provide a Desirable Borate-Rich Solid Electrolyte Interface in Ca-Ion Batteries.","authors":"Abhiruchi Sharma, Puneet Gupta","doi":"10.1002/cssc.202500154","DOIUrl":null,"url":null,"abstract":"<p><p>The development of calcium-ion batteries (CIBs) as potential successors to lithium-ion batteries has been hindered by the lack of suitable electrolytes. Conventional electrolytes often decompose on the Ca anode, forming calcium-ion impermeable passivation layers that impede reversible calcium plating and stripping. Therefore, the design of stable electrolytes or those capable of forming Ca<sup>2+</sup> permeable passivation layers remains a critical challenge. The present study investigates calcium salts of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup><mi>X</mi> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\left(\\text{YB}\\right)_{11} \\text{X}_{12}^{-}$</annotation></semantics> </math> (Y = C/Si and X = -BO/OBO) anions using density functional theory (DFT)-based simulations for CIBs. DFT calculations emphasize the oxidative stability of anions, while ab initio molecular dynamics (AIMD) simulations reveal their reductive behavior on the Ca anode. Time-dependent charge transfer analysis and projected density of states provide an atomistic perspective on electron transfer between the Ca surface and anions, aligning with observations from frontier orbital analyses. Decomposition of <math> <semantics> <mrow> <msub><mrow><mtext>YB</mtext></mrow> <mrow><mn>11</mn></mrow> </msub> <msubsup> <mrow><mrow><mo>(</mo> <mrow><mtext>OBO</mtext></mrow> <mo>)</mo></mrow> </mrow> <mrow><mn>12</mn></mrow> <mo>-</mo></msubsup> </mrow> <annotation>$\\left(\\text{YB}\\right)_{11} \\left(\\left(\\right. \\text{OBO} \\left.\\right)\\right)_{12}^{-}$</annotation></semantics> </math> (Y = C/Si) anions during AIMD simulation reveals the formation of borate-based species as part of the solid electrolyte interface, suggesting their potential as electrolytes that enable effective calcium plating and stripping. Overall, this work paves the way for designing efficient electrolytes, offering a fresh perspective to identify optimal CIB electrolytes, and moving beyond ensuring electrolyte stability on the Ca anode.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500154"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500154","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of calcium-ion batteries (CIBs) as potential successors to lithium-ion batteries has been hindered by the lack of suitable electrolytes. Conventional electrolytes often decompose on the Ca anode, forming calcium-ion impermeable passivation layers that impede reversible calcium plating and stripping. Therefore, the design of stable electrolytes or those capable of forming Ca2+ permeable passivation layers remains a critical challenge. The present study investigates calcium salts of YB 11 X 12 - $\left(\text{YB}\right)_{11} \text{X}_{12}^{-}$ (Y = C/Si and X = -BO/OBO) anions using density functional theory (DFT)-based simulations for CIBs. DFT calculations emphasize the oxidative stability of anions, while ab initio molecular dynamics (AIMD) simulations reveal their reductive behavior on the Ca anode. Time-dependent charge transfer analysis and projected density of states provide an atomistic perspective on electron transfer between the Ca surface and anions, aligning with observations from frontier orbital analyses. Decomposition of YB 11 ( OBO ) 12 - $\left(\text{YB}\right)_{11} \left(\left(\right. \text{OBO} \left.\right)\right)_{12}^{-}$ (Y = C/Si) anions during AIMD simulation reveals the formation of borate-based species as part of the solid electrolyte interface, suggesting their potential as electrolytes that enable effective calcium plating and stripping. Overall, this work paves the way for designing efficient electrolytes, offering a fresh perspective to identify optimal CIB electrolytes, and moving beyond ensuring electrolyte stability on the Ca anode.

硅研究表明,- obo单元结合在yb11 (obo) 12 - $$ \mathbf{Y} {\mathbf{B}}_{11} ( \mathbf{O} \mathbf{B} \mathbf{O} {)}_{12}^{-} $$ (Y = C/Si)阴离子中的稳定硼笼上,为钙离子电池提供了理想的富硼固体电解质界面。
由于缺乏合适的电解质,钙离子电池(CIBs)作为锂离子电池的潜在接班人的发展一直受到阻碍。传统的电解质经常在钙阳极上分解,形成钙离子不渗透钝化层,阻碍可逆的钙电镀和剥离。因此,设计稳定的电解质或能够形成Ca2+渗透钝化层的电解质仍然是一个关键的挑战。本研究利用密度泛函理论(DFT)模拟cib,研究了yb11 X 12 - $\左(\text{YB}\右)_{11}\text{X}_{12}^{-}$ (Y = C/Si和X = - bo /OBO)阴离子的钙盐。DFT计算强调阴离子的氧化稳定性,而从头算分子动力学(AIMD)模拟揭示了阴离子在Ca阳极上的还原行为。随时间变化的电荷转移分析和状态的预测密度提供了Ca表面和阴离子之间电子转移的原子观点,与前沿轨道分析的观察结果一致。分解yb11 (OBO) 12 - $\left(\text{YB}\right)_{11} \left(\left(\右)。\text{OBO} \left.\right)\right)_{12}^{-}$ (Y = C/Si)阴离子在AIMD模拟过程中揭示了硼酸盐基物质作为固体电解质界面的一部分的形成,表明它们作为电解质的潜力,可以实现有效的钙镀和剥离。总的来说,这项工作为设计高效电解质铺平了道路,为确定最佳CIB电解质提供了新的视角,并超越了确保Ca阳极上电解质稳定性的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信