Assessing the potential for in vivo modulation of FTH1 gene expression with small peptides to restore and enhance androgen receptor pathway inhibition in prostate cancer.
Crawford Currie, Christian Bjerknes, McKayla Nicol, Sateesh Kumar, Bomi Framroze
{"title":"Assessing the potential for in vivo modulation of <i>FTH1 gene</i> expression with small peptides to restore and enhance androgen receptor pathway inhibition in prostate cancer.","authors":"Crawford Currie, Christian Bjerknes, McKayla Nicol, Sateesh Kumar, Bomi Framroze","doi":"10.1080/15384047.2025.2503417","DOIUrl":null,"url":null,"abstract":"<p><p>Increased levels of intratumoral free iron drive more aggressive behavior with the development of treatment resistance and spread in a range of cancers including prostate cancer (PCa). This phenotype is associated with an increase in TFRC expression and a decrease in FTH1, a profile supporting increased iron acquisition. In this study we investigated the anti-oncogenic effects of two small peptides (FT-002 and FT-005) that upregulate FTH1 expression and downregulate TFRC expression when combined with standard androgen receptor pathway inhibitors (ARPIs) in xenograft models of PCa in male athymic nude mice. The PC3 cell line was used to establish xenografts representing highly aggressive, androgen-resistant PCa and the LNCaP cell line as a model of androgen-sensitive PCa. Both peptides enhanced the anti-tumor efficacy of ARPI therapy. Efficacy was more marked with the combination of the second-generation APRI enzalutamide than the first-generation agent bicalutamide, a result consistent with known resistance mechanisms to different ARPI therapy. Further, the FT-peptide/enzalutamide combination drove tumor regression whereas enzalutamide monotherapy only slowed growth, even in the hormone-sensitive xenograft. The FT-002a-enzalutamide combination was more effective than FT-005 in reducing tumor mass and volume and modulating FTH1 and TFRC expression. The reversal by the peptides of this oncogenic expression pattern points to a reduction in the tumor free iron via increased iron storage in ferritin and a reduction in iron influx via the transferrin receptor. Peptide-mediated modulation of tumor iron metabolism may therefore offer a novel means to enhance ARPI efficacy and delay resistance in advanced prostate cancer.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2503417"},"PeriodicalIF":4.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2503417","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increased levels of intratumoral free iron drive more aggressive behavior with the development of treatment resistance and spread in a range of cancers including prostate cancer (PCa). This phenotype is associated with an increase in TFRC expression and a decrease in FTH1, a profile supporting increased iron acquisition. In this study we investigated the anti-oncogenic effects of two small peptides (FT-002 and FT-005) that upregulate FTH1 expression and downregulate TFRC expression when combined with standard androgen receptor pathway inhibitors (ARPIs) in xenograft models of PCa in male athymic nude mice. The PC3 cell line was used to establish xenografts representing highly aggressive, androgen-resistant PCa and the LNCaP cell line as a model of androgen-sensitive PCa. Both peptides enhanced the anti-tumor efficacy of ARPI therapy. Efficacy was more marked with the combination of the second-generation APRI enzalutamide than the first-generation agent bicalutamide, a result consistent with known resistance mechanisms to different ARPI therapy. Further, the FT-peptide/enzalutamide combination drove tumor regression whereas enzalutamide monotherapy only slowed growth, even in the hormone-sensitive xenograft. The FT-002a-enzalutamide combination was more effective than FT-005 in reducing tumor mass and volume and modulating FTH1 and TFRC expression. The reversal by the peptides of this oncogenic expression pattern points to a reduction in the tumor free iron via increased iron storage in ferritin and a reduction in iron influx via the transferrin receptor. Peptide-mediated modulation of tumor iron metabolism may therefore offer a novel means to enhance ARPI efficacy and delay resistance in advanced prostate cancer.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.