Mihaela Ficu, Dan Niculescu-Duvaz, Mohammed Aljarah, Caroline Springer, Christopher S Kershaw
{"title":"Hijacking the MDM2 E3 Ligase with novel BRD4-Targeting PROTACs in Pancreatic Cancer Cells.","authors":"Mihaela Ficu, Dan Niculescu-Duvaz, Mohammed Aljarah, Caroline Springer, Christopher S Kershaw","doi":"10.1002/cbic.202500133","DOIUrl":null,"url":null,"abstract":"<p><p>The phenotypic effect induced by a Proteolysis-Targeting Chimera (PROTAC) can depend on several factors, including the E3 ligase recruited. For the discovery of a first-in-class PROTAC for a target of interest, the E3 ligases commonly hijacked remain the Von Hippel-Lindau (VHL) and Cereblon (CRBN) since potent and accessible ligands are readily available to recruit them. Mouse double minute 2 (MDM2) E3 ligase stands out because it regulates p53 levels to maintain cellular homeostasis. However, the synthesis of the most potent MDM2 ligands remains very complex. Here we report the discovery of novel MDM2-recruiting PROTACs incorporating rac-Nutlin-3 as a ligand with an easier synthetic tractability, further demonstrating its potential in this technology. The most promising degrader, PROTAC 3, showed preferential degradation of the BRD4 short isoform and c-Myc compared with MZ1, a validated VHL-based PROTAC.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202500133"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500133","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phenotypic effect induced by a Proteolysis-Targeting Chimera (PROTAC) can depend on several factors, including the E3 ligase recruited. For the discovery of a first-in-class PROTAC for a target of interest, the E3 ligases commonly hijacked remain the Von Hippel-Lindau (VHL) and Cereblon (CRBN) since potent and accessible ligands are readily available to recruit them. Mouse double minute 2 (MDM2) E3 ligase stands out because it regulates p53 levels to maintain cellular homeostasis. However, the synthesis of the most potent MDM2 ligands remains very complex. Here we report the discovery of novel MDM2-recruiting PROTACs incorporating rac-Nutlin-3 as a ligand with an easier synthetic tractability, further demonstrating its potential in this technology. The most promising degrader, PROTAC 3, showed preferential degradation of the BRD4 short isoform and c-Myc compared with MZ1, a validated VHL-based PROTAC.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).