Association of core brain networks with antipsychotic therapeutic effects in first-episode schizophrenia.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Yuling Luo, Tianyuan Zhu, Yu Zhang, Jiamin Fan, Xiaojun Zuo, Xiaorong Feng, Jinnan Gong, Dezhong Yao, Jijun Wang, Cheng Luo
{"title":"Association of core brain networks with antipsychotic therapeutic effects in first-episode schizophrenia.","authors":"Yuling Luo, Tianyuan Zhu, Yu Zhang, Jiamin Fan, Xiaojun Zuo, Xiaorong Feng, Jinnan Gong, Dezhong Yao, Jijun Wang, Cheng Luo","doi":"10.1093/cercor/bhaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating neurobiological mechanisms underlying the heterogeneity of antipsychotic treatment will be of great value for precision medicine in schizophrenia, yet there has been limited progress. We combined static and dynamic functional connectivity (FC) analysis to examine the abnormal communications among core brain networks [default-mode network (DMN), central executive network (CEN), salience network (SN), primary network (PN), and subcortical network (SCN) in clinical subtypes of schizophrenia (responders and nonresponders to antipsychotic monotherapy). Resting-state functional magnetic resonance imaging data were collected from 79 first-episode schizophrenia and 90 healthy controls. All patients received antipsychotic monotherapy for up to 12 weeks and underwent a second scan. We found that significantly reduced static FC in CEN-DMN/SN and SN-SCN were observed in nonresponders after treatment, whereas almost no difference was observed in responders. The nonresponders showed significantly higher dynamic FC in PN-DMN/SN than responders at baseline. Further, the baseline FC in core brain networks were treated as moderators involved in symptom relief and distinguished response subtypes with high classification accuracy. Collectively, the current work highlights the potential of communications among five core brain networks in searching biomarkers of antipsychotic monotherapy response and neuroanatomical subtypes, advancing the understanding of antipsychotic treatment mechanisms in schizophrenia.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Elucidating neurobiological mechanisms underlying the heterogeneity of antipsychotic treatment will be of great value for precision medicine in schizophrenia, yet there has been limited progress. We combined static and dynamic functional connectivity (FC) analysis to examine the abnormal communications among core brain networks [default-mode network (DMN), central executive network (CEN), salience network (SN), primary network (PN), and subcortical network (SCN) in clinical subtypes of schizophrenia (responders and nonresponders to antipsychotic monotherapy). Resting-state functional magnetic resonance imaging data were collected from 79 first-episode schizophrenia and 90 healthy controls. All patients received antipsychotic monotherapy for up to 12 weeks and underwent a second scan. We found that significantly reduced static FC in CEN-DMN/SN and SN-SCN were observed in nonresponders after treatment, whereas almost no difference was observed in responders. The nonresponders showed significantly higher dynamic FC in PN-DMN/SN than responders at baseline. Further, the baseline FC in core brain networks were treated as moderators involved in symptom relief and distinguished response subtypes with high classification accuracy. Collectively, the current work highlights the potential of communications among five core brain networks in searching biomarkers of antipsychotic monotherapy response and neuroanatomical subtypes, advancing the understanding of antipsychotic treatment mechanisms in schizophrenia.

核心脑网络与首发精神分裂症抗精神病治疗效果的关联。
阐明抗精神病药物治疗异质性的神经生物学机制对精神分裂症的精准治疗具有重要价值,但目前进展有限。我们结合静态和动态功能连通性(FC)分析,研究了精神分裂症临床亚型(抗精神病药物单一治疗有反应和无反应)中核心脑网络[默认模式网络(DMN)、中央执行网络(CEN)、突出网络(SN)、初级网络(PN)和皮层下网络(SCN)]之间的异常通信。静息状态功能磁共振成像数据来自79名首发精神分裂症患者和90名健康对照者。所有患者接受抗精神病单药治疗长达12周,并进行第二次扫描。我们发现在治疗后无反应者中观察到cn - dmn /SN和SN- scn的静态FC显著降低,而在反应者中几乎没有观察到差异。无应答者的PN-DMN/SN动态FC显著高于应答者。此外,核心脑网络中的基线FC被视为参与症状缓解和区分反应亚型的调节因子,具有高分类准确性。总的来说,目前的工作强调了五个核心脑网络之间在寻找抗精神病药物单一治疗反应的生物标志物和神经解剖学亚型方面的沟通潜力,促进了对精神分裂症抗精神病药物治疗机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信