Novel Quinazolinones Active against Multidrug-Resistant Mycobacterium Tuberculosis: Synthesis, Antimicrobial Evaluation, and in Silico Exploration of Penicillin-Binding Protein 1A as a Potential Target.
Marek Kerda, Daria Nawrot, Petr Šlechta, Miroslav Domanský, Asal Askari, Hanieh Kamangar, Ondřej Janďourek, Klára Konečná, Pavla Paterová, Ingrid Hlbočanová, Miloslav Macháček, Matteo Mori, Fiorella Meneghetti, Martin Doležal, Jan Zitko, Ghada Bouz
{"title":"Novel Quinazolinones Active against Multidrug-Resistant Mycobacterium Tuberculosis: Synthesis, Antimicrobial Evaluation, and in Silico Exploration of Penicillin-Binding Protein 1A as a Potential Target.","authors":"Marek Kerda, Daria Nawrot, Petr Šlechta, Miroslav Domanský, Asal Askari, Hanieh Kamangar, Ondřej Janďourek, Klára Konečná, Pavla Paterová, Ingrid Hlbočanová, Miloslav Macháček, Matteo Mori, Fiorella Meneghetti, Martin Doležal, Jan Zitko, Ghada Bouz","doi":"10.1002/cmdc.202500147","DOIUrl":null,"url":null,"abstract":"<p><p>Quinazolinone derivatives have emerged as promising scaffolds in antimicrobial drug discovery. This work focuses on the design, synthesis, and evaluation of novel quinazolinone-based compounds and predicts their potential to interact with mycobacterial penicillin-binding proteins (PBPs). Relying on established structure-activity relationships of antibacterial quinazolinones, a total of 53 compounds belonging to three different structural types are synthesized and biologically evaluated for antimycobacterial, antibacterial, and antifungal activities. Biological evaluations reveal selective efficacy against Mycobacterium tuberculosis with minimum inhibitory concentrations (MICs) as low as 6.25 μg mL<sup>-1</sup> for some derivatives, and this activity is preserved against drug-resistant strains. Molecular docking studies suggest a potential allosteric binding site in mycobacterial PBP 1A (PonA1, UniProt ID: P71707), and subsequential molecular dynamics confirm stable binding with key stabilizing interaction between the carbonyl oxygen of the quinazolinone and either ARG399 or ASP474. These findings suggest quinazolinone derivatives as viable candidates for further development as non-β-lactam PBP inhibitors, addressing the urgent need for new antitubercular therapies.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e2500147"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quinazolinone derivatives have emerged as promising scaffolds in antimicrobial drug discovery. This work focuses on the design, synthesis, and evaluation of novel quinazolinone-based compounds and predicts their potential to interact with mycobacterial penicillin-binding proteins (PBPs). Relying on established structure-activity relationships of antibacterial quinazolinones, a total of 53 compounds belonging to three different structural types are synthesized and biologically evaluated for antimycobacterial, antibacterial, and antifungal activities. Biological evaluations reveal selective efficacy against Mycobacterium tuberculosis with minimum inhibitory concentrations (MICs) as low as 6.25 μg mL-1 for some derivatives, and this activity is preserved against drug-resistant strains. Molecular docking studies suggest a potential allosteric binding site in mycobacterial PBP 1A (PonA1, UniProt ID: P71707), and subsequential molecular dynamics confirm stable binding with key stabilizing interaction between the carbonyl oxygen of the quinazolinone and either ARG399 or ASP474. These findings suggest quinazolinone derivatives as viable candidates for further development as non-β-lactam PBP inhibitors, addressing the urgent need for new antitubercular therapies.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.