Low Temperature Complexation Approach for Immobilization of Single Copper Atom Catalyst in Stacked Polytriazine for Click Cycloaddition Reaction.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pratibha Kiran Giri, Anuj Rawat, Mukaddar Sk, Bishnupriya Swain, Ranjit Thapa, Paritosh Mohanty
{"title":"Low Temperature Complexation Approach for Immobilization of Single Copper Atom Catalyst in Stacked Polytriazine for Click Cycloaddition Reaction.","authors":"Pratibha Kiran Giri, Anuj Rawat, Mukaddar Sk, Bishnupriya Swain, Ranjit Thapa, Paritosh Mohanty","doi":"10.1002/smtd.202500655","DOIUrl":null,"url":null,"abstract":"<p><p>A significant research gap in the field of synthesis of single atom catalysts (SACs) is addressed by developing a low-temperature complexation approach to stabilize the single metal atoms on stacked polytiazine matrix (g-C<sub>3</sub>N<sub>4</sub>) with a good metal loading. Unlike conventional high-energy (400-700 °C) and time-intensive (120-300 min) methods typically used for embedding SACs in g-C<sub>3</sub>N<sub>4</sub> matrices, the present synthesis utilizes a facile, microwave-assisted method that operates at a low temperature of 140 °C and completes within 30 min. Comprehensive analysis reveal that complexation of the Cu<sup>2+</sup>/Cu<sup>+</sup> ions with nitrogen in the polytriazine structure facilitates layer stacking. Specifically, Cu⁺ ions promote sheet formation in co-ordination with two nearby N atoms, while Cu<sup>2+</sup> ions stabilize the stacked layers of the polytriazine framework through co-ordination with four N atoms. The resulting SAC exhibits a Cu metal loading up to 3.5 wt.%, with a specific surface area (SA<sub>BET</sub>) of 330 m<sup>2</sup> g<sup>-1</sup> and pore size distribution centered at 1.9 and 5 nm. The SAC demonstrates excellent catalytic performance for click cycloaddition reactions under base-free conditions, with a high turnover frequency (TOF) of 120 h<sup>-1</sup>, a broad substrate scope, and reusability across seven cycles without detectable Cu leaching, making it a promising SAC for triazole synthesis.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500655"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500655","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A significant research gap in the field of synthesis of single atom catalysts (SACs) is addressed by developing a low-temperature complexation approach to stabilize the single metal atoms on stacked polytiazine matrix (g-C3N4) with a good metal loading. Unlike conventional high-energy (400-700 °C) and time-intensive (120-300 min) methods typically used for embedding SACs in g-C3N4 matrices, the present synthesis utilizes a facile, microwave-assisted method that operates at a low temperature of 140 °C and completes within 30 min. Comprehensive analysis reveal that complexation of the Cu2+/Cu+ ions with nitrogen in the polytriazine structure facilitates layer stacking. Specifically, Cu⁺ ions promote sheet formation in co-ordination with two nearby N atoms, while Cu2+ ions stabilize the stacked layers of the polytriazine framework through co-ordination with four N atoms. The resulting SAC exhibits a Cu metal loading up to 3.5 wt.%, with a specific surface area (SABET) of 330 m2 g-1 and pore size distribution centered at 1.9 and 5 nm. The SAC demonstrates excellent catalytic performance for click cycloaddition reactions under base-free conditions, with a high turnover frequency (TOF) of 120 h-1, a broad substrate scope, and reusability across seven cycles without detectable Cu leaching, making it a promising SAC for triazole synthesis.

低温络合法固定化单铜原子催化剂在叠聚三嗪上的点击环加成反应。
研究了一种低温络合方法,以稳定具有良好金属负载的叠态聚氮基(g-C3N4)上的单金属原子,解决了单原子催化剂合成领域的一个重大研究空白。不同于传统的高能量(400-700°C)和时间密集型(120-300分钟)方法通常用于在g-C3N4基质中嵌入SACs,目前的合成采用了一种简单的微波辅助方法,在140°C的低温下操作,在30分钟内完成。综合分析表明,在多三氮结构中,Cu2+/Cu+离子与氮的络合有利于层堆积。具体来说,Cu +离子通过与附近两个N原子的配位促进了薄片的形成,而Cu2+离子通过与四个N原子的配位稳定了聚三嗪框架的堆叠层。结果表明,SAC的Cu金属负载高达3.5 wt.%,比表面积(SABET)为330 m2 g-1,孔径分布在1.9 nm和5 nm中心。在无碱条件下,SAC在点击环加成反应中表现出优异的催化性能,具有120 h-1的高周转率(TOF),广泛的底物范围,并且在7个循环中重复使用而未检测到铜浸出,使其成为一种很有前途的三唑合成SAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信