{"title":"First steps toward building natural history of diseases computationally: Lessons learned from the Noonan syndrome use case.","authors":"Tudor Groza, Warittha Rayabsri, Dylan Gration, Harshini Hariram, Saumya Shekhar Jamuar, Gareth Baynam","doi":"10.1016/j.ajhg.2025.03.014","DOIUrl":null,"url":null,"abstract":"<p><p>Rare diseases (RDs) are conditions affecting fewer than 1 in 2,000 people, with over 7,000 identified, primarily genetic in nature, and more than half impacting children. Although each RD affects a small population, collectively, between 3.5% and 5.9% of the global population, or 262.9-446.2 million people, live with an RD. Most RDs lack established treatment protocols, highlighting the need for proper care pathways addressing prognosis, diagnosis, and management. Advances in generative AI and large language models (LLMs) offer new opportunities to document the temporal progression of phenotypic features, addressing gaps in current knowledge bases. This study proposes an LLM-based framework to capture the natural history of diseases, specifically focusing on Noonan syndrome. The framework aims to document phenotypic trajectories, validate against RD knowledge bases, and integrate insights into care coordination using electronic health record (EHR) data from the Undiagnosed Diseases Program Singapore.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"112 5","pages":"1158-1172"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.03.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Rare diseases (RDs) are conditions affecting fewer than 1 in 2,000 people, with over 7,000 identified, primarily genetic in nature, and more than half impacting children. Although each RD affects a small population, collectively, between 3.5% and 5.9% of the global population, or 262.9-446.2 million people, live with an RD. Most RDs lack established treatment protocols, highlighting the need for proper care pathways addressing prognosis, diagnosis, and management. Advances in generative AI and large language models (LLMs) offer new opportunities to document the temporal progression of phenotypic features, addressing gaps in current knowledge bases. This study proposes an LLM-based framework to capture the natural history of diseases, specifically focusing on Noonan syndrome. The framework aims to document phenotypic trajectories, validate against RD knowledge bases, and integrate insights into care coordination using electronic health record (EHR) data from the Undiagnosed Diseases Program Singapore.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.