Dual-Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Nitrate Reduction Electrocatalysis.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-13 DOI:10.1002/cssc.202500380
Yirong Liu, Wence Xu, Zhonghui Gao, Yanqin Liang, Hui Jiang, Zhaoyang Li, Fang Wang, Shengli Zhu, Zhenduo Cui
{"title":"Dual-Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Nitrate Reduction Electrocatalysis.","authors":"Yirong Liu, Wence Xu, Zhonghui Gao, Yanqin Liang, Hui Jiang, Zhaoyang Li, Fang Wang, Shengli Zhu, Zhenduo Cui","doi":"10.1002/cssc.202500380","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic reduction of nitrate to ammonia is a promising strategy for green ammonia production. However, the nitrate reduction reaction (NO<sub>3</sub>RR) still suffers from the sluggish kinetics of hydrogenation process and subsequent ammonia desorption. Herein, the nanoporous Cu/Cu<sub>6</sub>Sn<sub>5</sub> heterostructure is prepared by dealloying and serves as an efficient catalyst for NO<sub>3</sub>RR. The Cu/Cu<sub>6</sub>Sn<sub>5</sub> heterostructure improves the affinity of alkali-ionized water, promoting intermediate hydrogenation via enhanced active hydrogen supply. Moreover, NH<sub>3</sub> desorption can also be accelerated by the introduction of the Cu<sub>6</sub>Sn<sub>5</sub> phase. As a result, the np-Cu/Cu<sub>6</sub>Sn<sub>5</sub> catalyst exhibits a high ammonia yield of 1.2 mmol h<sup>-1</sup> cm<sup>-2</sup> with an excellent Faradaic efficiency of 97%. This work provides an intriguing strategy to enhance the catalytic activity by regulating the intermediates adsorption.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500380"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500380","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic reduction of nitrate to ammonia is a promising strategy for green ammonia production. However, the nitrate reduction reaction (NO3RR) still suffers from the sluggish kinetics of hydrogenation process and subsequent ammonia desorption. Herein, the nanoporous Cu/Cu6Sn5 heterostructure is prepared by dealloying and serves as an efficient catalyst for NO3RR. The Cu/Cu6Sn5 heterostructure improves the affinity of alkali-ionized water, promoting intermediate hydrogenation via enhanced active hydrogen supply. Moreover, NH3 desorption can also be accelerated by the introduction of the Cu6Sn5 phase. As a result, the np-Cu/Cu6Sn5 catalyst exhibits a high ammonia yield of 1.2 mmol h-1 cm-2 with an excellent Faradaic efficiency of 97%. This work provides an intriguing strategy to enhance the catalytic activity by regulating the intermediates adsorption.

层状纳米孔金属双金属间异质结构用于高效硝酸还原电催化。
电催化还原硝态氮制氨是一种很有前途的绿色制氨方法。然而,硝酸还原反应(NO3RR)的加氢过程和随后的氨脱附动力学仍然缓慢。本文采用脱合金法制备了纳米多孔Cu/Cu6Sn5异质结构,并将其作为NO3RR的高效催化剂。Cu/Cu6Sn5异质结构提高了碱离子水的亲和力,由于活性氢供应充足,促进了中间氢化反应。此外,Cu6Sn5相的引入还可以加速NH3的脱附。结果表明,np-Cu/Cu6Sn5催化剂的氨收率为1.2 mmol·h-1·cm-2,法拉第效率为97%。这项工作为通过调节中间体吸附来提高催化活性提供了一个有趣的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信