Deep Learning-Based Estimation of Myocardial Material Parameters from Cardiac MRI.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yunhe Chen, Xiwen Zhang, Yongzhong Huo, Shuo Wang
{"title":"Deep Learning-Based Estimation of Myocardial Material Parameters from Cardiac MRI.","authors":"Yunhe Chen, Xiwen Zhang, Yongzhong Huo, Shuo Wang","doi":"10.3390/bioengineering12040433","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate estimation of myocardial material parameters is crucial to understand cardiac biomechanics and plays a key role in advancing computational modeling and clinical applications. Traditional inverse finite element (FE) methods rely on iterative optimization to infer these parameters, which is computationally expensive and time-consuming, limiting their clinical applicability.</p><p><strong>Methods: </strong>This study proposes a deep learning-based approach to rapidly and accurately estimate the left ventricular myocardial material parameters directly from routine cardiac magnetic resonance imaging (CMRI) data. A ResNet18-based model was trained on FEM-derived parameters from a dataset of 1288 healthy subjects.</p><p><strong>Results: </strong>The proposed model demonstrated high predictive accuracy on healthy subjects, achieving mean absolute errors of 0.0146 for Ca and 0.0139 for Cb, with mean relative errors below 5.00%. Additionally, we evaluated the model on a small pathological subset (including ARV and HCM cases). The results revealed that while the model maintained strong performance on healthy data, the prediction errors in the pathological samples were higher, indicating increased challenges in modeling diseased myocardial tissue.</p><p><strong>Conclusion: </strong>This study establishes a computationally efficient and accurate deep learning framework for estimating myocardial material parameters, eliminating the need for time-consuming iterative FE optimization. While the model shows promising performance on healthy subjects, further validation and refinement are required to address its limitations in pathological conditions, thereby paving the way for personalized cardiac modeling and improved clinical decision-making.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12040433","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate estimation of myocardial material parameters is crucial to understand cardiac biomechanics and plays a key role in advancing computational modeling and clinical applications. Traditional inverse finite element (FE) methods rely on iterative optimization to infer these parameters, which is computationally expensive and time-consuming, limiting their clinical applicability.

Methods: This study proposes a deep learning-based approach to rapidly and accurately estimate the left ventricular myocardial material parameters directly from routine cardiac magnetic resonance imaging (CMRI) data. A ResNet18-based model was trained on FEM-derived parameters from a dataset of 1288 healthy subjects.

Results: The proposed model demonstrated high predictive accuracy on healthy subjects, achieving mean absolute errors of 0.0146 for Ca and 0.0139 for Cb, with mean relative errors below 5.00%. Additionally, we evaluated the model on a small pathological subset (including ARV and HCM cases). The results revealed that while the model maintained strong performance on healthy data, the prediction errors in the pathological samples were higher, indicating increased challenges in modeling diseased myocardial tissue.

Conclusion: This study establishes a computationally efficient and accurate deep learning framework for estimating myocardial material parameters, eliminating the need for time-consuming iterative FE optimization. While the model shows promising performance on healthy subjects, further validation and refinement are required to address its limitations in pathological conditions, thereby paving the way for personalized cardiac modeling and improved clinical decision-making.

基于深度学习的心脏MRI心肌材料参数估计。
背景:准确估计心肌材料参数是了解心脏生物力学的关键,在推进计算建模和临床应用中起着关键作用。传统的有限元反演方法依赖于迭代优化来推断这些参数,计算量大,耗时长,限制了其临床应用。方法:本研究提出了一种基于深度学习的方法,直接从常规心脏磁共振成像(CMRI)数据中快速准确地估计左心室心肌物质参数。基于resnet18的模型使用1288名健康受试者数据集的fem衍生参数进行训练。结果:该模型对健康受试者具有较高的预测精度,Ca的平均绝对误差为0.0146,Cb的平均绝对误差为0.0139,平均相对误差低于5.00%。此外,我们在一小部分病理亚组(包括ARV和HCM病例)上评估了该模型。结果表明,虽然该模型在健康数据上保持了较强的性能,但在病理样本上的预测误差更高,这表明建模病变心肌组织的挑战增加了。结论:本研究建立了一个计算高效、准确的心肌材料参数估计深度学习框架,消除了耗时的迭代有限元优化。虽然该模型在健康受试者上表现良好,但需要进一步验证和改进,以解决其在病理条件下的局限性,从而为个性化心脏建模和改进临床决策铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信