Daniel J Lee, Mohammad Hamghalam, Lily Wang, Hui-Ming Lin, Errol Colak, Muhammad Mamdani, Amber L Simpson, John M Lee
{"title":"The use of a convolutional neural network to automate radiologic scoring of computed tomography of paranasal sinuses.","authors":"Daniel J Lee, Mohammad Hamghalam, Lily Wang, Hui-Ming Lin, Errol Colak, Muhammad Mamdani, Amber L Simpson, John M Lee","doi":"10.1186/s12938-025-01376-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic rhinosinusitis (CRS) is diagnosed with symptoms and objective endoscopy or computed tomography (CT). The Lund-Mackay score (LMS) is often used to determine the radiologic severity of CRS and make clinical decisions. This proof-of-concept study aimed to develop an automated algorithm combining a convolutional neural network (CNN) for sinus segmentation with post-processing to compute LMS directly from CT scans.</p><p><strong>Results: </strong>Radiology Information System was queried for outpatient paranasal sinus CTs at a tertiary institution. We identified 1,399 CT scans which were manually labelled with LMS of individual sinuses. Seventy-seven CT scans with 13,668 coronal images were segmented manually for individual sinuses. Our model for segmentation achieved a mean Dice score of 0.85 for all sinus regions, except for the osteomeatal complex. For individual Dice scores were 0.95, 0.71, 0.78, 0.93, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively. LMS was computed automatically by applying adaptive image thresholding and pixel counting to the CNN's segmented regions. A convolutional neural network (CNN) model was trained to segment each sinus region. Overall, the LMS model showed a high degree of accuracy with a score of 0.92, 0.99, 0.99, 0.97, 0.99, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively.</p><p><strong>Conclusions: </strong>Reporting of paranasal sinus CT can be automated and potentially standardized with a CNN model to provide accurate Lund-Mackay score.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"49"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01376-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic rhinosinusitis (CRS) is diagnosed with symptoms and objective endoscopy or computed tomography (CT). The Lund-Mackay score (LMS) is often used to determine the radiologic severity of CRS and make clinical decisions. This proof-of-concept study aimed to develop an automated algorithm combining a convolutional neural network (CNN) for sinus segmentation with post-processing to compute LMS directly from CT scans.
Results: Radiology Information System was queried for outpatient paranasal sinus CTs at a tertiary institution. We identified 1,399 CT scans which were manually labelled with LMS of individual sinuses. Seventy-seven CT scans with 13,668 coronal images were segmented manually for individual sinuses. Our model for segmentation achieved a mean Dice score of 0.85 for all sinus regions, except for the osteomeatal complex. For individual Dice scores were 0.95, 0.71, 0.78, 0.93, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively. LMS was computed automatically by applying adaptive image thresholding and pixel counting to the CNN's segmented regions. A convolutional neural network (CNN) model was trained to segment each sinus region. Overall, the LMS model showed a high degree of accuracy with a score of 0.92, 0.99, 0.99, 0.97, 0.99, 0.86 for the maxillary, anterior ethmoid, posterior ethmoid, sphenoid, and frontal sinuses, respectively.
Conclusions: Reporting of paranasal sinus CT can be automated and potentially standardized with a CNN model to provide accurate Lund-Mackay score.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering