{"title":"Experimental and FEM simulation study of compressive deformation of solder microballs and particle chains†","authors":"Y. Harkavyi, K. Giżyński and Z. Rozynek","doi":"10.1039/D4SM01499E","DOIUrl":null,"url":null,"abstract":"<p >Beaded microstructures, formed by side-by-side alignment of spherical microparticles, offer a promising approach for creating micropaths with pre-determined electrical and thermal conductivity. Post-processing through mechanical compression effectively modulates the structural and conductive properties, enabling precise control over conductivity by applying defined compressive forces and calibrating strain levels. To investigate the mechanical properties of these beaded structures, this study begins with an in-depth analysis of the compressive response of unconstrained individual solder microballs, representative of malleable soft materials. The study examines the influence of particle size, engineering strain rate, and temperature on compressive force and deformation characteristics. Results from single-particle experiments are then systematically compared with those from beaded structures, revealing distinct mechanical responses. In particular, particle chains require higher compressive forces due to lateral constraints introduced by neighbouring particles, with differences in force values dependent on strain level and also on the number of microballs in the chain. FEM simulations were employed to model stress distributions, contact pressures, and deformation profiles, extending the analysis to deformation scenarios beyond experimental limits. The Johnson–Cook (J–C) model proved to be a robust predictor of compressive behaviour under varying strain rates and elevated temperatures, with temperature exerting a more significant influence than strain rate. Parameterization of the model allowed for accurate replication of empirical scaling behaviours, with strain rate and temperature dependencies from the J–C model closely matching experimental observations. These results expand our understanding of single solder microparticle deformation and offer valuable insights into the deformation of beaded structures, which could be beneficial for practical applications such as the fabrication of electronic components.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 22","pages":" 4393-4406"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d4sm01499e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01499e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Beaded microstructures, formed by side-by-side alignment of spherical microparticles, offer a promising approach for creating micropaths with pre-determined electrical and thermal conductivity. Post-processing through mechanical compression effectively modulates the structural and conductive properties, enabling precise control over conductivity by applying defined compressive forces and calibrating strain levels. To investigate the mechanical properties of these beaded structures, this study begins with an in-depth analysis of the compressive response of unconstrained individual solder microballs, representative of malleable soft materials. The study examines the influence of particle size, engineering strain rate, and temperature on compressive force and deformation characteristics. Results from single-particle experiments are then systematically compared with those from beaded structures, revealing distinct mechanical responses. In particular, particle chains require higher compressive forces due to lateral constraints introduced by neighbouring particles, with differences in force values dependent on strain level and also on the number of microballs in the chain. FEM simulations were employed to model stress distributions, contact pressures, and deformation profiles, extending the analysis to deformation scenarios beyond experimental limits. The Johnson–Cook (J–C) model proved to be a robust predictor of compressive behaviour under varying strain rates and elevated temperatures, with temperature exerting a more significant influence than strain rate. Parameterization of the model allowed for accurate replication of empirical scaling behaviours, with strain rate and temperature dependencies from the J–C model closely matching experimental observations. These results expand our understanding of single solder microparticle deformation and offer valuable insights into the deformation of beaded structures, which could be beneficial for practical applications such as the fabrication of electronic components.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.