{"title":"Reference values for arm ergometry cardiopulmonary exercise testing (CPET) in healthy volunteers.","authors":"Joanna Shakespeare, Edward Parkes","doi":"10.1136/bmjresp-2024-002806","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The performance of a cardiopulmonary exercise test (CPET) requires an individual to undertake a progressive, maximal exercise test to a symptom-limited end point. CPET is commonly performed using a treadmill or cycle ergometer (CE). Arm ergometry (AE) is an alternative exercise modality to CE; however, AE produces lower peak oxygen uptake (V̇O<sub>2</sub>) values as it involves smaller muscle groups and generates less cardiovascular stress. Current predicted equations for the interpretation of AE CPET are limited by small sample sizes, gender bias and limited age ranges.</p><p><strong>Aims: </strong>To develop predicted equations and reference ranges for AE exercise testing.</p><p><strong>Design: </strong>Incremental ramp protocol CPET, to a symptom-limited end point, via AE was performed in a group of 116 (62 F) healthy volunteers of median age 38 (IQR 29-48) years. Breath-by-breath gas analysis was performed using the Ultima CPX (Medical Graphics, UK) metabolic cart. Quantile regression analysis was used to develop regression equations for AE V̇O<sub>2</sub>, peak work rate (WR), anaerobic threshold, peak ventilation (VE), peak heart rate, oxygen pulse, V̇E/V̇CO<sub>2</sub> slope and V̇O<sub>2</sub>/WR slope.</p><p><strong>Results: </strong>Reference equations including upper and/or lower limits, based on quantile regression, were generated and verified using a validation cohort.</p><p><strong>Conclusions: </strong>These findings represent the largest and most diverse set of predicted values and reference ranges for AE CPET parameters in healthy individuals to date. Implementation of these reference equations will allow AE to be more widely adopted, enabling the performance and interpretation of CPET in a wider population.</p>","PeriodicalId":9048,"journal":{"name":"BMJ Open Respiratory Research","volume":"12 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjresp-2024-002806","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The performance of a cardiopulmonary exercise test (CPET) requires an individual to undertake a progressive, maximal exercise test to a symptom-limited end point. CPET is commonly performed using a treadmill or cycle ergometer (CE). Arm ergometry (AE) is an alternative exercise modality to CE; however, AE produces lower peak oxygen uptake (V̇O2) values as it involves smaller muscle groups and generates less cardiovascular stress. Current predicted equations for the interpretation of AE CPET are limited by small sample sizes, gender bias and limited age ranges.
Aims: To develop predicted equations and reference ranges for AE exercise testing.
Design: Incremental ramp protocol CPET, to a symptom-limited end point, via AE was performed in a group of 116 (62 F) healthy volunteers of median age 38 (IQR 29-48) years. Breath-by-breath gas analysis was performed using the Ultima CPX (Medical Graphics, UK) metabolic cart. Quantile regression analysis was used to develop regression equations for AE V̇O2, peak work rate (WR), anaerobic threshold, peak ventilation (VE), peak heart rate, oxygen pulse, V̇E/V̇CO2 slope and V̇O2/WR slope.
Results: Reference equations including upper and/or lower limits, based on quantile regression, were generated and verified using a validation cohort.
Conclusions: These findings represent the largest and most diverse set of predicted values and reference ranges for AE CPET parameters in healthy individuals to date. Implementation of these reference equations will allow AE to be more widely adopted, enabling the performance and interpretation of CPET in a wider population.
期刊介绍:
BMJ Open Respiratory Research is a peer-reviewed, open access journal publishing respiratory and critical care medicine. It is the sister journal to Thorax and co-owned by the British Thoracic Society and BMJ. The journal focuses on robustness of methodology and scientific rigour with less emphasis on novelty or perceived impact. BMJ Open Respiratory Research operates a rapid review process, with continuous publication online, ensuring timely, up-to-date research is available worldwide. The journal publishes review articles and all research study types: Basic science including laboratory based experiments and animal models, Pilot studies or proof of concept, Observational studies, Study protocols, Registries, Clinical trials from phase I to multicentre randomised clinical trials, Systematic reviews and meta-analyses.