The Journey and Modes of Action of Therapeutic Nanomaterials in Cells.

IF 3.9 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Bioconjugate Chemistry Pub Date : 2025-05-21 Epub Date: 2025-04-11 DOI:10.1021/acs.bioconjchem.4c00584
Célia Sahli, Kenry
{"title":"The Journey and Modes of Action of Therapeutic Nanomaterials in Cells.","authors":"Célia Sahli, Kenry","doi":"10.1021/acs.bioconjchem.4c00584","DOIUrl":null,"url":null,"abstract":"<p><p>Over past decades, a wide range of nanomaterials have been synthesized and exploited to augment the efficacy and biocompatibility of disease theranostics and nanomedicine. The unique physicochemical properties of nanomaterials, such as high specific surface area, tunable size and shape, and versatile surface chemistry, enable the controlled modulation of nanomaterial-biosystem interactions and, consequently, more precise interventions, particularly at the cellular level. The selective modulation of nanomaterial-cell interactions can be leveraged to regulate cellular internalization, intracellular trafficking and localization, and cellular clearance of nanomaterials to enhance the disease therapeutic efficacy and minimize potential cytotoxicity. Herein, we provide an overview of our recent understanding of the journey and modes of action of therapeutic nanomaterials in cells. Specifically, we highlight the various pathways of cellular internalization, trafficking, and excretion of these nanomaterials. The different modes of action of therapeutic nanomaterials, especially controlled release and delivery, photothermal and photodynamic effects, and immunomodulation, are also discussed. We conclude our review by offering some perspectives on the current challenges and potential opportunities in this field.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"914-929"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00584","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Over past decades, a wide range of nanomaterials have been synthesized and exploited to augment the efficacy and biocompatibility of disease theranostics and nanomedicine. The unique physicochemical properties of nanomaterials, such as high specific surface area, tunable size and shape, and versatile surface chemistry, enable the controlled modulation of nanomaterial-biosystem interactions and, consequently, more precise interventions, particularly at the cellular level. The selective modulation of nanomaterial-cell interactions can be leveraged to regulate cellular internalization, intracellular trafficking and localization, and cellular clearance of nanomaterials to enhance the disease therapeutic efficacy and minimize potential cytotoxicity. Herein, we provide an overview of our recent understanding of the journey and modes of action of therapeutic nanomaterials in cells. Specifically, we highlight the various pathways of cellular internalization, trafficking, and excretion of these nanomaterials. The different modes of action of therapeutic nanomaterials, especially controlled release and delivery, photothermal and photodynamic effects, and immunomodulation, are also discussed. We conclude our review by offering some perspectives on the current challenges and potential opportunities in this field.

治疗性纳米材料在细胞中的历程和作用模式。
在过去的几十年里,广泛的纳米材料被合成和开发,以增强疾病治疗和纳米医学的疗效和生物相容性。纳米材料独特的物理化学性质,如高比表面积,可调节的尺寸和形状,以及多用途的表面化学,使纳米材料-生物系统相互作用的可控调节成为可能,因此,更精确的干预,特别是在细胞水平上。纳米材料-细胞相互作用的选择性调节可以调节细胞内化、细胞内运输和定位以及纳米材料的细胞清除,从而提高疾病的治疗效果并最大限度地减少潜在的细胞毒性。在此,我们概述了我们最近对细胞中治疗性纳米材料的旅程和作用模式的理解。具体来说,我们强调了这些纳米材料的细胞内化、运输和排泄的各种途径。本文还讨论了治疗性纳米材料的不同作用模式,特别是控制释放和递送、光热和光动力效应以及免疫调节。最后,我们对该领域当前的挑战和潜在机遇提出了一些看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信