{"title":"A Dual-Interaction Supramolecular Hydrogel System for siRNA Delivery to Enhance Endometrial Receptivity in Stem Cell Therapy.","authors":"Xiaowei Zhang, Yongping Lu, Liqun Yang, Yu Sui, Chong Zhang, Wei Zhang, Jing Guo, Keke Wang, Xiaoliang Liu, Meina Lin","doi":"10.1021/acs.biomac.5c00132","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial receptivity is crucial for embryo implantation success. Stem cell therapy shows promise for improving endometrial health. We developed a supramolecular hydrogel scaffold based on stereocomplexed triblock copolymers (MPEG-(sc-PLA)-PEI) and α-cyclodextrin for codelivering menstrual blood-derived endometrial stem cells (MenSCs) and siRNA targeting DNA methyl transferase 1 (DNMT1), enabling RNAi-mediated gene silencing to improve endometrial receptivity. The resulting α-CD/MPEG-(sc-PLA)-PEI hydrogels exhibited high mechanical stability, excellent self-healing capabilities, and sustained siRNA release via a dual-interaction mechanism involving host-guest interaction and stereocomplexation. <i>In vitro</i> studies indicated superior cellular uptake of DNMT1 siRNA encapsulated within MPEG-(sc-PLA)-PEI complexes, resulting in significant upregulation of endometrial receptivity markers, including HOXA10, ITGB3, and E-cadherin. <i>In vivo</i> experiments showed that DNMT1 siRNA-loaded hydrogels facilitated endometrial remodeling through therapeutic transgene expression in MenSCs. These findings suggest that this multifunctional hydrogel system may serve as an effective tool for stem cell-based therapies aimed at enhancing endometrial receptivity.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"3044-3058"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00132","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial receptivity is crucial for embryo implantation success. Stem cell therapy shows promise for improving endometrial health. We developed a supramolecular hydrogel scaffold based on stereocomplexed triblock copolymers (MPEG-(sc-PLA)-PEI) and α-cyclodextrin for codelivering menstrual blood-derived endometrial stem cells (MenSCs) and siRNA targeting DNA methyl transferase 1 (DNMT1), enabling RNAi-mediated gene silencing to improve endometrial receptivity. The resulting α-CD/MPEG-(sc-PLA)-PEI hydrogels exhibited high mechanical stability, excellent self-healing capabilities, and sustained siRNA release via a dual-interaction mechanism involving host-guest interaction and stereocomplexation. In vitro studies indicated superior cellular uptake of DNMT1 siRNA encapsulated within MPEG-(sc-PLA)-PEI complexes, resulting in significant upregulation of endometrial receptivity markers, including HOXA10, ITGB3, and E-cadherin. In vivo experiments showed that DNMT1 siRNA-loaded hydrogels facilitated endometrial remodeling through therapeutic transgene expression in MenSCs. These findings suggest that this multifunctional hydrogel system may serve as an effective tool for stem cell-based therapies aimed at enhancing endometrial receptivity.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.