{"title":"Environmental behavior, risks, and management of antidepressants in the aquatic environment","authors":"Yingying Liu, Jiapei Lv, Changsheng Guo, Xiaowei Jin, Depeng Zuo and Jian Xu","doi":"10.1039/D4EM00793J","DOIUrl":null,"url":null,"abstract":"<p >Antidepressants are increasingly detected in aquatic environments due to their incomplete removal in wastewater treatment, raising significant concerns about their ecological impacts. This review focuses on the three most widely used classes of antidepressants—tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin–norepinephrine reuptake inhibitors (SNRIs). It systematically explores their physicochemical properties and how these properties influence their environmental fate, including sorption, mobility, and bioaccumulation in aquatic ecosystems. The sublethal effects of these antidepressants on aquatic organisms, particularly their impacts on behavior, reproduction, and development, are critically analyzed, highlighting potential threats to biodiversity and ecological stability. Key knowledge gaps are identified, including the long-term impacts of chronic low-dose exposure, the role of bioactive metabolites, and the combined toxicity of antidepressants with other contaminants. The review underscores the importance of advanced wastewater treatment technologies, environmentally mindful prescribing practices, and public awareness campaigns as essential measures to mitigate these risks. By addressing these challenges, this study aims to inform future research and guide sustainable environmental management strategies.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 5","pages":" 1196-1228"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/em/d4em00793j","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antidepressants are increasingly detected in aquatic environments due to their incomplete removal in wastewater treatment, raising significant concerns about their ecological impacts. This review focuses on the three most widely used classes of antidepressants—tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin–norepinephrine reuptake inhibitors (SNRIs). It systematically explores their physicochemical properties and how these properties influence their environmental fate, including sorption, mobility, and bioaccumulation in aquatic ecosystems. The sublethal effects of these antidepressants on aquatic organisms, particularly their impacts on behavior, reproduction, and development, are critically analyzed, highlighting potential threats to biodiversity and ecological stability. Key knowledge gaps are identified, including the long-term impacts of chronic low-dose exposure, the role of bioactive metabolites, and the combined toxicity of antidepressants with other contaminants. The review underscores the importance of advanced wastewater treatment technologies, environmentally mindful prescribing practices, and public awareness campaigns as essential measures to mitigate these risks. By addressing these challenges, this study aims to inform future research and guide sustainable environmental management strategies.
期刊介绍:
Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.