Madelaine P Thorpe, Corey R Hopkins, Jeffrey N Johnston
{"title":"End-to-End Backbone Cyclization Enhances Passive Permeability of bRo5 Oligomeric Depsipeptides with Nonlinear Size Dependence.","authors":"Madelaine P Thorpe, Corey R Hopkins, Jeffrey N Johnston","doi":"10.1021/acsmedchemlett.5c00037","DOIUrl":null,"url":null,"abstract":"<p><p>A majority of drugs are small molecules that satisfy Lipinski's Rule-of-Five (Ro5), but efforts to target topologically complex biomolecular interactions have reignited interest in nonconforming molecular therapeutics, dubbed \"beyond Ro5 (bRo5)\". Broadly useful design principles for bRo5 molecules are few in number, although several studies have highlighted the benefit to bioavailability and proteolytic stability that can result from the introduction of a constraining ring into conformationally mobile peptides. Here we show that a linear oligomeric depsipeptide (OD) template can be leveraged to link size to permeability, while the corresponding cyclic oligomeric depsipeptide (COD) series is used to determine the impact of cyclization as an added conformational constraint. Unexpectedly, certain macrocycle sizes confer a greater benefit to permeability than others.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 4","pages":"638-645"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.5c00037","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A majority of drugs are small molecules that satisfy Lipinski's Rule-of-Five (Ro5), but efforts to target topologically complex biomolecular interactions have reignited interest in nonconforming molecular therapeutics, dubbed "beyond Ro5 (bRo5)". Broadly useful design principles for bRo5 molecules are few in number, although several studies have highlighted the benefit to bioavailability and proteolytic stability that can result from the introduction of a constraining ring into conformationally mobile peptides. Here we show that a linear oligomeric depsipeptide (OD) template can be leveraged to link size to permeability, while the corresponding cyclic oligomeric depsipeptide (COD) series is used to determine the impact of cyclization as an added conformational constraint. Unexpectedly, certain macrocycle sizes confer a greater benefit to permeability than others.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.