Network pharmacology approach to unravel the neuroprotective potential of natural products: a narrative review.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Pankaj Singh, Maheshkumar Borkar, Gaurav Doshi
{"title":"Network pharmacology approach to unravel the neuroprotective potential of natural products: a narrative review.","authors":"Pankaj Singh, Maheshkumar Borkar, Gaurav Doshi","doi":"10.1007/s11030-025-11198-3","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a slow and irreversible biological process leading to decreased cell and tissue functions with higher risks of multiple age-related diseases, including neurodegenerative diseases. It is widely accepted that aging represents the leading risk factor for neurodegeneration. The pathogenesis of these diseases involves complex interactions of genetic mutations, environmental factors, oxidative stress, neuroinflammation, and mitochondrial dysfunction, which complicate treatment with traditional mono-targeted therapies. Network pharmacology can help identify potential gene or protein targets related to neurodegenerative diseases. Integrating advanced molecular profiling technologies and computer-aided drug design further enhances the potential of network pharmacology, enabling the identification of biomarkers and therapeutic targets, thus paving the way for precision medicine in neurodegenerative diseases. This review article delves into the application of network pharmacology in understanding and treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and spinal muscular atrophy. Overall, this article emphasizes the importance of addressing aging as a central factor in developing effective disease-modifying therapies, highlighting how network pharmacology can unravel the complex biological networks associated with aging and pave the way for personalized medical strategies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11198-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a slow and irreversible biological process leading to decreased cell and tissue functions with higher risks of multiple age-related diseases, including neurodegenerative diseases. It is widely accepted that aging represents the leading risk factor for neurodegeneration. The pathogenesis of these diseases involves complex interactions of genetic mutations, environmental factors, oxidative stress, neuroinflammation, and mitochondrial dysfunction, which complicate treatment with traditional mono-targeted therapies. Network pharmacology can help identify potential gene or protein targets related to neurodegenerative diseases. Integrating advanced molecular profiling technologies and computer-aided drug design further enhances the potential of network pharmacology, enabling the identification of biomarkers and therapeutic targets, thus paving the way for precision medicine in neurodegenerative diseases. This review article delves into the application of network pharmacology in understanding and treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and spinal muscular atrophy. Overall, this article emphasizes the importance of addressing aging as a central factor in developing effective disease-modifying therapies, highlighting how network pharmacology can unravel the complex biological networks associated with aging and pave the way for personalized medical strategies.

网络药理学方法揭开天然产品的神经保护潜力:叙述回顾。
衰老是一个缓慢而不可逆的生物过程,导致细胞和组织功能下降,并增加多种与年龄相关疾病的风险,包括神经退行性疾病。人们普遍认为,衰老是神经退行性变的主要危险因素。这些疾病的发病机制涉及基因突变、环境因素、氧化应激、神经炎症和线粒体功能障碍等复杂的相互作用,使传统的单靶向治疗复杂化。网络药理学可以帮助识别与神经退行性疾病相关的潜在基因或蛋白质靶点。将先进的分子分析技术与计算机辅助药物设计相结合,进一步增强了网络药理学的潜力,使生物标志物和治疗靶点的识别成为可能,从而为神经退行性疾病的精准医学铺平了道路。这篇综述文章深入探讨了网络药理学在理解和治疗神经退行性疾病如阿尔茨海默病、帕金森病、肌萎缩侧索硬化症、亨廷顿病和脊髓性肌萎缩症中的应用。总体而言,本文强调了将衰老作为开发有效疾病修饰疗法的中心因素的重要性,强调了网络药理学如何揭示与衰老相关的复杂生物网络,并为个性化医疗策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信