Replacing PEG-Lipid with Amphiphilic Polycarbonates in mRNA-Loaded Lipid Nanoparticles: Impact of Polycarbonate Structure on Physicochemical and Transfection Properties.
Dao Thi Hong Le, Chuan Yang, Yue Zhang, Gui Zhao, Melgious J Y Ang, Ki Hyun Bae, James H P Hui, James L Hedrick, Yi Yan Yang
{"title":"Replacing PEG-Lipid with Amphiphilic Polycarbonates in mRNA-Loaded Lipid Nanoparticles: Impact of Polycarbonate Structure on Physicochemical and Transfection Properties.","authors":"Dao Thi Hong Le, Chuan Yang, Yue Zhang, Gui Zhao, Melgious J Y Ang, Ki Hyun Bae, James H P Hui, James L Hedrick, Yi Yan Yang","doi":"10.1021/acs.biomac.5c00088","DOIUrl":null,"url":null,"abstract":"<p><p>Since the remarkable breakthrough of COVID-19 mRNA vaccines, lipid nanoparticles (LNPs) have gained substantial attention as the most cutting-edge clinical formulations for mRNA delivery. PEGylated lipid (PEG-lipid) has been regarded as an essential constituent of LNPs that helps to prolong their systemic circulation by preventing particle aggregation in the blood and sequestration by the mononuclear phagocyte system. Herein, we synthesized a series of mRNA-loaded nanoparticles by replacing ALC-0159 (a PEG-lipid used in the Comirnaty formulation) with amphiphilic PEG-polycarbonate diblock copolymers (PC-HNPs). Interestingly, variations of polycarbonate block length and structure significantly influenced mRNA encapsulation efficiency, transfection potency, colloidal stability, and PEG shedding rate of PC-HNPs. <i>In vivo</i> and <i>ex vivo</i> bioluminescence imaging revealed that upon subcutaneous administration in mice, the leading candidate PC3-HNP achieved lymph node accumulation comparable to that of the conventional ALC-0159-based LNP formulation while avoiding undesirable liver accumulation. Our findings may provide valuable information for the construction of next-generation nanocarriers for effective mRNA delivery.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00088","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the remarkable breakthrough of COVID-19 mRNA vaccines, lipid nanoparticles (LNPs) have gained substantial attention as the most cutting-edge clinical formulations for mRNA delivery. PEGylated lipid (PEG-lipid) has been regarded as an essential constituent of LNPs that helps to prolong their systemic circulation by preventing particle aggregation in the blood and sequestration by the mononuclear phagocyte system. Herein, we synthesized a series of mRNA-loaded nanoparticles by replacing ALC-0159 (a PEG-lipid used in the Comirnaty formulation) with amphiphilic PEG-polycarbonate diblock copolymers (PC-HNPs). Interestingly, variations of polycarbonate block length and structure significantly influenced mRNA encapsulation efficiency, transfection potency, colloidal stability, and PEG shedding rate of PC-HNPs. In vivo and ex vivo bioluminescence imaging revealed that upon subcutaneous administration in mice, the leading candidate PC3-HNP achieved lymph node accumulation comparable to that of the conventional ALC-0159-based LNP formulation while avoiding undesirable liver accumulation. Our findings may provide valuable information for the construction of next-generation nanocarriers for effective mRNA delivery.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.