{"title":"Bio-Mimicking Nanoparticle System Facilitates Sonodynamic-Mediated Clearance of Extensively Drug-Resistant Bacteria.","authors":"Fenglin Gao, Runlu Zhou, Yucong He, Yuanyuan Zhang, Cui Bao, Ganzhu Feng","doi":"10.1021/acsbiomaterials.4c02455","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of carbapenem-resistant and extensively drug-resistant <i>Acinetobacter baumannii</i> (XDR-Ab) poses a critical challenge in treating hospital-acquired pulmonary infections. In this study, we developed a biomimetic neutrophil membrane-coated nanoparticle system, NM@PCN-TIG, for the targeted delivery of tigecycline (TIG). The system utilizes the porphyrin-based metal-organic framework (MOF) PCN-224 as the core of the nanoparticle, encapsulating TIG and coated with a neutrophil membrane (NM) to enhance immune evasion and targeting of infection sites. Its loading efficiency, controlled release properties, cytotoxicity, and bactericidal activity under ultrasound mediation were systematically evaluated in vitro and in vivo. Our results demonstrated that NM@PCN-TIG significantly enhanced the bactericidal efficacy of TIG, increased reactive oxygen species (ROS) production, and promoted macrophage polarization toward an anti-inflammatory phenotype. This innovative biomimetic TIG nanosystem shows great potential as a platform for addressing XDR-Ab-induced pneumonia.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2988-3002"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02455","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii (XDR-Ab) poses a critical challenge in treating hospital-acquired pulmonary infections. In this study, we developed a biomimetic neutrophil membrane-coated nanoparticle system, NM@PCN-TIG, for the targeted delivery of tigecycline (TIG). The system utilizes the porphyrin-based metal-organic framework (MOF) PCN-224 as the core of the nanoparticle, encapsulating TIG and coated with a neutrophil membrane (NM) to enhance immune evasion and targeting of infection sites. Its loading efficiency, controlled release properties, cytotoxicity, and bactericidal activity under ultrasound mediation were systematically evaluated in vitro and in vivo. Our results demonstrated that NM@PCN-TIG significantly enhanced the bactericidal efficacy of TIG, increased reactive oxygen species (ROS) production, and promoted macrophage polarization toward an anti-inflammatory phenotype. This innovative biomimetic TIG nanosystem shows great potential as a platform for addressing XDR-Ab-induced pneumonia.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture