Nina Leiter, Maximilian Wohlschläger, Martin Versen, Sonja D Harter, Tina Kießlich, Franziska Lederer, Stefanie Clauß, Dietmar Schlosser, Emanuel Gheorghita Armanu, Christian Eberlein, Hermann J Heipieper, Martin G J Löder, Christian Laforsch
{"title":"Effects of defined organic layers on the fluorescence lifetime of plastic materials.","authors":"Nina Leiter, Maximilian Wohlschläger, Martin Versen, Sonja D Harter, Tina Kießlich, Franziska Lederer, Stefanie Clauß, Dietmar Schlosser, Emanuel Gheorghita Armanu, Christian Eberlein, Hermann J Heipieper, Martin G J Löder, Christian Laforsch","doi":"10.1007/s00216-025-05888-y","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics have become an integral part of modern life, and linked to that fact, the demand for and global production of plastics are still increasing. However, the environmental pollution caused by plastics has reached unprecedented levels. The accumulation of small plastic fragments-microplastics and nanoplastics-potentially threatens organisms, ecosystems, and human health. Researchers commonly employ non-destructive analytical methods to assess the presence and characteristics of microplastic particles in environmental samples. However, these techniques require extensive sample preparation, which represents a significant limitation and hinders a direct on-site analysis. In this context, previous investigations showed the potential of fluorescence lifetime imaging microscopy (FLIM) for fast and reliable identification of microplastics in an environmental matrix. However, since microplastics receive an environmental coating after entering nature, a challenge arises from organic contamination on the surface of microplastic particles. How this influences the fluorescence signal and the possibility of microplastic detection are unknown. To address this research gap, we exposed acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate (PET) plastic samples to peptides, proteins, bacteria, and a filamentous fungus to induce organic contamination and mimic environmental conditions. We analyzed the fluorescence spectra and lifetimes of the samples using fluorescence spectroscopy and frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM), respectively. Our results demonstrate that reliably identifying and differentiating ABS and PET was possible via FD-FLIM, even in the presence of these biological contaminations. These findings highlight the potential of this technique as a valuable tool for environmental monitoring and plastic characterization, offering a rapid and efficient alternative to currently used analytical methods.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05888-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Plastics have become an integral part of modern life, and linked to that fact, the demand for and global production of plastics are still increasing. However, the environmental pollution caused by plastics has reached unprecedented levels. The accumulation of small plastic fragments-microplastics and nanoplastics-potentially threatens organisms, ecosystems, and human health. Researchers commonly employ non-destructive analytical methods to assess the presence and characteristics of microplastic particles in environmental samples. However, these techniques require extensive sample preparation, which represents a significant limitation and hinders a direct on-site analysis. In this context, previous investigations showed the potential of fluorescence lifetime imaging microscopy (FLIM) for fast and reliable identification of microplastics in an environmental matrix. However, since microplastics receive an environmental coating after entering nature, a challenge arises from organic contamination on the surface of microplastic particles. How this influences the fluorescence signal and the possibility of microplastic detection are unknown. To address this research gap, we exposed acrylonitrile butadiene styrene (ABS) and polyethylene terephthalate (PET) plastic samples to peptides, proteins, bacteria, and a filamentous fungus to induce organic contamination and mimic environmental conditions. We analyzed the fluorescence spectra and lifetimes of the samples using fluorescence spectroscopy and frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM), respectively. Our results demonstrate that reliably identifying and differentiating ABS and PET was possible via FD-FLIM, even in the presence of these biological contaminations. These findings highlight the potential of this technique as a valuable tool for environmental monitoring and plastic characterization, offering a rapid and efficient alternative to currently used analytical methods.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.