Elastomeric Substrates with Femtosecond(fs)-Laser Fabricated Hierarchical Micropillar-Nanostructures for Strain-Active Sub-fM Ultrasensitive Raman Detection.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hang Pan, Yan Zhao, Chuping Zhang, Huijuan Zhang, Liye Zhu, Mengyuan Wang, Jidong Liu, Zhiyang Xu, Wenting Pan, Xinlong Yan, Tianrui Zhai, Yijian Jiang, Yinzhou Yan
{"title":"Elastomeric Substrates with Femtosecond(fs)-Laser Fabricated Hierarchical Micropillar-Nanostructures for Strain-Active Sub-fM Ultrasensitive Raman Detection.","authors":"Hang Pan, Yan Zhao, Chuping Zhang, Huijuan Zhang, Liye Zhu, Mengyuan Wang, Jidong Liu, Zhiyang Xu, Wenting Pan, Xinlong Yan, Tianrui Zhai, Yijian Jiang, Yinzhou Yan","doi":"10.1002/smtd.202500198","DOIUrl":null,"url":null,"abstract":"<p><p>The challenge to ultrasensitive surface-enhanced Raman spectroscopy (SERS) has to trade off the detection sensitivity and storage stability for the sophisticated SERS substrates. The tunable surface wettability is hence critical to switch the capture mode for detection and protection state for antifouling storage. However, surface-wettability-tunable substrates generally require reversible electric-, light-, temperature- or pH-sensitive properties to regulate the substrate nanostructures and chemical properties, for which complicated operation procedures are inevitable. Here, an elastomeric fluorophlogopite SERS substrate composed of a hierarchical micropillar-nanostructure array is reported by femtosecond(fs)-laser nanofabrication. The wettability of the substrate is reversibly tuned by mechanical strain from the free superhydrophobic surface (156°) in Cassie state to the compressive hydrophilic one (76°) in Wenzel state. The wettability-controllable surface facilitates to capture of target molecules for limit of detection down to 0.1fM@5 µL with the enhancement factor of 2.46 × 10<sup>12</sup> for Rhodamine 6G, of which the standard deviation is 7.8%, indicating good homogeneity. The developed elastomeric SERS substrate not only demonstrates the anti-pollution for long-term storage but also provides a simple way to switch the surface wettability for ultrasensitive Raman detection, holding promise for ultrasensitive clinical and biological SERS in future.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500198"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500198","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge to ultrasensitive surface-enhanced Raman spectroscopy (SERS) has to trade off the detection sensitivity and storage stability for the sophisticated SERS substrates. The tunable surface wettability is hence critical to switch the capture mode for detection and protection state for antifouling storage. However, surface-wettability-tunable substrates generally require reversible electric-, light-, temperature- or pH-sensitive properties to regulate the substrate nanostructures and chemical properties, for which complicated operation procedures are inevitable. Here, an elastomeric fluorophlogopite SERS substrate composed of a hierarchical micropillar-nanostructure array is reported by femtosecond(fs)-laser nanofabrication. The wettability of the substrate is reversibly tuned by mechanical strain from the free superhydrophobic surface (156°) in Cassie state to the compressive hydrophilic one (76°) in Wenzel state. The wettability-controllable surface facilitates to capture of target molecules for limit of detection down to 0.1fM@5 µL with the enhancement factor of 2.46 × 1012 for Rhodamine 6G, of which the standard deviation is 7.8%, indicating good homogeneity. The developed elastomeric SERS substrate not only demonstrates the anti-pollution for long-term storage but also provides a simple way to switch the surface wettability for ultrasensitive Raman detection, holding promise for ultrasensitive clinical and biological SERS in future.

弹性衬底飞秒激光分层微柱纳米结构用于应变主动亚调频超灵敏拉曼检测。
超灵敏表面增强拉曼光谱(SERS)面临的挑战是必须权衡复杂SERS衬底的检测灵敏度和存储稳定性。因此,可调的表面润湿性对于切换捕获模式以进行检测和保护状态以进行防污存储至关重要。然而,表面润湿性可调衬底通常需要可逆的电、光、温度或ph敏感特性来调节衬底的纳米结构和化学性质,因此复杂的操作过程是不可避免的。本文报道了一种由层次化微柱-纳米结构阵列组成的弹性氟云母SERS衬底。基板的润湿性通过机械应变可逆地从Cassie状态下的自由超疏水表面(156°)调整到Wenzel状态下的压缩亲水表面(76°)。润湿性可控表面有利于捕获目标分子,检测限低至0.1fM@5µL,罗丹明6G的增强因子为2.46 × 1012,其中标准偏差为7.8%,均质性好。所开发的弹性体SERS衬底不仅具有长期储存的抗污染性,而且为超灵敏拉曼检测提供了一种简单的表面润湿性切换方法,有望在未来用于超灵敏的临床和生物SERS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信