ASS1 is a hub gene and possible therapeutic target for regulating metabolic dysfunction-associated steatotic liver disease modulated by a carbohydrate-restricted diet.
{"title":"ASS1 is a hub gene and possible therapeutic target for regulating metabolic dysfunction-associated steatotic liver disease modulated by a carbohydrate-restricted diet.","authors":"Shaojun Chen, Yanhua Bi, Lihua Zhang","doi":"10.1007/s11030-025-11187-6","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease globally. A low-carbohydrate diet (LCD) offers benefits to MASLD patients, albeit its exact mechanism is not fully understood. Using public liver transcriptome data from MASLD patients before/after LCD intervention, we applied differential expression analysis and machine learning to identify key genes. We initially identified 162 differentially expressed genes in the GSE107650 dataset. Secondly, employing two machine learning algorithms, we found that PRAMENP, LEAP2, LOC105379013, and argininosuccinate synthetase 1 (ASS1) are potential hub genes. Additionally, protein-protein interaction and single-cell RNA location analyses suggested that ASS1 was the most crucial hub gene. Then, L1000CDS<sup>2</sup> analysis of the gene-expression signatures was employed for drug repurposing studies. CGP71683, an appetite suppressant, was predicted to improve MASLD and may mimic the ASS1 expression pattern induced by an LCD. Molecular dynamics confirmed spontaneous, stable CGP71683-ASS1 complex formation. Overall, this work based on analysis of machine learning algorithms, essential gene identification, and drug repurposing studies suggested that ASS1 is an essential gene in MASLD and CGP71683 is a potential drug candidate for treating MASLD by targeting ASS1 and mimicking the beneficial effects of an LCD. However, due to the inherent limitations of a purely computational approach, further experimental investigation is necessary to validate the anticipated results.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11187-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease globally. A low-carbohydrate diet (LCD) offers benefits to MASLD patients, albeit its exact mechanism is not fully understood. Using public liver transcriptome data from MASLD patients before/after LCD intervention, we applied differential expression analysis and machine learning to identify key genes. We initially identified 162 differentially expressed genes in the GSE107650 dataset. Secondly, employing two machine learning algorithms, we found that PRAMENP, LEAP2, LOC105379013, and argininosuccinate synthetase 1 (ASS1) are potential hub genes. Additionally, protein-protein interaction and single-cell RNA location analyses suggested that ASS1 was the most crucial hub gene. Then, L1000CDS2 analysis of the gene-expression signatures was employed for drug repurposing studies. CGP71683, an appetite suppressant, was predicted to improve MASLD and may mimic the ASS1 expression pattern induced by an LCD. Molecular dynamics confirmed spontaneous, stable CGP71683-ASS1 complex formation. Overall, this work based on analysis of machine learning algorithms, essential gene identification, and drug repurposing studies suggested that ASS1 is an essential gene in MASLD and CGP71683 is a potential drug candidate for treating MASLD by targeting ASS1 and mimicking the beneficial effects of an LCD. However, due to the inherent limitations of a purely computational approach, further experimental investigation is necessary to validate the anticipated results.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;