{"title":"The bisintercalator family of nonribosomal peptides: structural diversity and biosynthetic mechanism.","authors":"Xinjie Shi","doi":"10.1039/d5np00003c","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: up to February 2025Among the numerous bioactive microbial natural products, a subset of nonribosomal peptides derived from actinobacteria is characterized by their <i>C</i><sub>2</sub>-symmetric macrocyclic scaffolds and referred to as bisintercalators due to their ability to bisintercalate into DNA molecules. This family of compounds exhibits excellent antimicrobial, antitumor and antiviral properties, making them promising candidates for drug development. New members of the bisintercalator family continue to be discovered, and significant advancement has been made in understanding their biosynthesis over the past two decades. These efforts have established the general biosynthetic pathways of bisintercalators, although some chemically intriguing enzymatic transformations remain to be fully elucidated. This review summarizes the sources and chemical structures of known bisintercalators, briefly discussing their bioactivities, and then highlights the biochemical reactions involved in assembling their sophisticated macrocyclic scaffolds.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00003c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Covering: up to February 2025Among the numerous bioactive microbial natural products, a subset of nonribosomal peptides derived from actinobacteria is characterized by their C2-symmetric macrocyclic scaffolds and referred to as bisintercalators due to their ability to bisintercalate into DNA molecules. This family of compounds exhibits excellent antimicrobial, antitumor and antiviral properties, making them promising candidates for drug development. New members of the bisintercalator family continue to be discovered, and significant advancement has been made in understanding their biosynthesis over the past two decades. These efforts have established the general biosynthetic pathways of bisintercalators, although some chemically intriguing enzymatic transformations remain to be fully elucidated. This review summarizes the sources and chemical structures of known bisintercalators, briefly discussing their bioactivities, and then highlights the biochemical reactions involved in assembling their sophisticated macrocyclic scaffolds.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.