Toward Accurate Quantum Mechanical Thermochemistry: (2) Optimal Methods for Enthalpy Calculations from Comprehensive Benchmarks of 284 Model Chemistries.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-05-01 Epub Date: 2025-04-20 DOI:10.1021/acs.jpca.5c00615
Haoyang Wu, Anna C Doner, Hao-Wei Pang, William H Green
{"title":"Toward Accurate Quantum Mechanical Thermochemistry: (2) Optimal Methods for Enthalpy Calculations from Comprehensive Benchmarks of 284 Model Chemistries.","authors":"Haoyang Wu, Anna C Doner, Hao-Wei Pang, William H Green","doi":"10.1021/acs.jpca.5c00615","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and efficient computations of the standard enthalpies of formation (Δ<i>H</i><sub>f</sub><sup>°</sup>) for small organic molecules are crucial for diverse chemical engineering and scientific applications. Building on part 1 of this work [<i>J. Phys. Chem. A</i> <b>2024</b>, 128, 21, 4335-4352], we systematically benchmark 284 model chemistries for Δ<i>H</i><sub>f</sub><sup>°</sup> computations. These methods span semiempirical approaches, density functional theory (DFT), wave function theory, and composite schemes. We derive Petersson- and Melius-type bond-additivity corrections (BACs) for each method using a curated database of 421 reference species. We further validate the top-performing methods using an independent test set of 500 species, including ions, radicals, and other challenging cases. Across nearly all methods and species, BACs significantly improve accuracy, especially for neutral singlet species. Composite schemes coupling moderate-level DFT geometries with local coupled-cluster single-point energies strike an excellent balance between cost and accuracy, often approaching chemical accuracy (≤1 kcal/mol). Notably, DLPNO-CCSD(T)-F12d/cc-pVTZ-F12//ωB97X-D/def2-TZVPD with Petersson BAC attains the benchmark-best mean absolute error (MAE) of 0.57 kcal/mol. Switching to DLPNO-CCSD(T)-F12d/cc-pVDZ-F12//GFN2-xTB reduces the computational cost by an order of magnitude, with only a modest increase in MAE (0.96 kcal/mol). Although carefully tuned model chemistries can also benefit charged and open-shell species, the scarcity of robust reference data in these areas highlights the need for broader, high-accuracy thermochemistry datasets. Overall, this benchmark provides practical guidance on selecting optimal model chemistries to efficiently compute accurate Δ<i>H</i><sub>f</sub><sup>°</sup> under varied computational constraints and molecular complexities, laying a foundation for large-scale, high-throughput thermochemical calculations that will support data-driven discovery and industrial applications.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 17","pages":"3949-3962"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00615","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient computations of the standard enthalpies of formation (ΔHf°) for small organic molecules are crucial for diverse chemical engineering and scientific applications. Building on part 1 of this work [J. Phys. Chem. A 2024, 128, 21, 4335-4352], we systematically benchmark 284 model chemistries for ΔHf° computations. These methods span semiempirical approaches, density functional theory (DFT), wave function theory, and composite schemes. We derive Petersson- and Melius-type bond-additivity corrections (BACs) for each method using a curated database of 421 reference species. We further validate the top-performing methods using an independent test set of 500 species, including ions, radicals, and other challenging cases. Across nearly all methods and species, BACs significantly improve accuracy, especially for neutral singlet species. Composite schemes coupling moderate-level DFT geometries with local coupled-cluster single-point energies strike an excellent balance between cost and accuracy, often approaching chemical accuracy (≤1 kcal/mol). Notably, DLPNO-CCSD(T)-F12d/cc-pVTZ-F12//ωB97X-D/def2-TZVPD with Petersson BAC attains the benchmark-best mean absolute error (MAE) of 0.57 kcal/mol. Switching to DLPNO-CCSD(T)-F12d/cc-pVDZ-F12//GFN2-xTB reduces the computational cost by an order of magnitude, with only a modest increase in MAE (0.96 kcal/mol). Although carefully tuned model chemistries can also benefit charged and open-shell species, the scarcity of robust reference data in these areas highlights the need for broader, high-accuracy thermochemistry datasets. Overall, this benchmark provides practical guidance on selecting optimal model chemistries to efficiently compute accurate ΔHf° under varied computational constraints and molecular complexities, laying a foundation for large-scale, high-throughput thermochemical calculations that will support data-driven discovery and industrial applications.

面向精确量子力学热化学:(2)基于284种模型化学综合基准的焓计算优化方法。
小有机分子的标准生成焓(ΔHf°)的准确和有效的计算对于各种化学工程和科学应用至关重要。在第1部分的基础上[J]。理论物理。化学。[204,128,21,4335 -4352],我们系统地对284种模型化学进行ΔHf°计算。这些方法包括半经验方法、密度泛函理论(DFT)、波函数理论和复合方案。我们利用421个参考物种的数据库,推导出每种方法的Petersson- and Melius-type键加性修正(BACs)。我们使用500种独立的测试集,包括离子、自由基和其他具有挑战性的情况,进一步验证了性能最好的方法。在几乎所有的方法和物种中,bac都显著提高了准确性,特别是对中性单线态物种。将中等水平DFT几何图形与局部耦合簇单点能量耦合的复合方案在成本和精度之间取得了很好的平衡,通常接近化学精度(≤1 kcal/mol)。值得注意的是,DLPNO-CCSD(T)-F12d/cc-pVTZ-F12//ωB97X-D/def2-TZVPD与Petersson BAC达到了0.57 kcal/mol的基准最佳平均绝对误差(MAE)。切换到DLPNO-CCSD(T)-F12d/cc-pVDZ-F12//GFN2-xTB可将计算成本降低一个数量级,而MAE仅略有增加(0.96 kcal/mol)。尽管精心调整的模型化学也可以使带电和开壳物种受益,但这些领域缺乏可靠的参考数据,这凸显了对更广泛、高精度热化学数据集的需求。总体而言,该基准为选择最佳模型化学提供了实用指导,以在各种计算约束和分子复杂性下有效地计算准确的ΔHf°,为大规模,高通量热化学计算奠定了基础,这将支持数据驱动的发现和工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信