Aalaa K Moussa, Heba A Abd El-Rahman, Riham R Mohamed, Demiana H Hanna
{"title":"Multifunctional Plasticized Hyaluronic-Acid-Based Nanogel Dressing for Accelerating Diabetic and Nondiabetic Wounds.","authors":"Aalaa K Moussa, Heba A Abd El-Rahman, Riham R Mohamed, Demiana H Hanna","doi":"10.1021/acs.biomac.5c00126","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic ulcers are associated with oxidative stress, inflammation, decreased synthesis of pro-healing mediators, and impaired vascularization, which convert the wound from acute to chronic and delay healing. An extended duration of wound healing raises the possibility of complications such as infection, sepsis, and even amputation. The objective of this study is the synthesis of a plasticized cross-linked hyaluronic acid (HA)-grafted poly(acrylamide-<i>co</i>-itaconic acid) nanogel as a nontoxic adhesive, swellable, antibacterial wound dressing with good mechanical properties to protect the wound from pathogens and accelerate the healing process, in addition to decreasing oxidative stress and inflammatory cytokines while increasing anti-inflammatory cytokines and angiogenesis. Nanogel H3 with a ratio (AM/IA) (3:1) showed excellent adhesion with good mechanical properties, biocompatibility, swelling, antioxidant, and antibacterial efficiencies. It showed great wound closure <i>in vitro</i> and <i>in vivo</i> with downregulation of inflammatory cytokines, upregulation of anti-inflammatory cytokines, and enhanced angiogenesis <i>in vivo</i> on diabetic and nondiabetic wounds.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00126","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic ulcers are associated with oxidative stress, inflammation, decreased synthesis of pro-healing mediators, and impaired vascularization, which convert the wound from acute to chronic and delay healing. An extended duration of wound healing raises the possibility of complications such as infection, sepsis, and even amputation. The objective of this study is the synthesis of a plasticized cross-linked hyaluronic acid (HA)-grafted poly(acrylamide-co-itaconic acid) nanogel as a nontoxic adhesive, swellable, antibacterial wound dressing with good mechanical properties to protect the wound from pathogens and accelerate the healing process, in addition to decreasing oxidative stress and inflammatory cytokines while increasing anti-inflammatory cytokines and angiogenesis. Nanogel H3 with a ratio (AM/IA) (3:1) showed excellent adhesion with good mechanical properties, biocompatibility, swelling, antioxidant, and antibacterial efficiencies. It showed great wound closure in vitro and in vivo with downregulation of inflammatory cytokines, upregulation of anti-inflammatory cytokines, and enhanced angiogenesis in vivo on diabetic and nondiabetic wounds.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.