{"title":"Screening <i>Isodon rubescens</i>-Derived Vesicles Harvested at Different Periods as Carriers for the Treatment of Colitis-Associated Cancer.","authors":"Junli Zhang, Yaqi Zhang, Xiaoji Ma, Haibo Wang, Chaofeng Zhang, Chengxue Pan","doi":"10.1021/acsbiomaterials.5c00160","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-derived extracellular vesicles are of great significance in practical applications due to their availability, low immunogenicity, and effective carrier performance. <i>Isodon rubescens</i>-derived vesicles (IRDVs) not only have the capability for drug-carrying targeted therapy but also exhibit certain anti-inflammatory and antitumor effects as part of traditional Chinese medicine. The harvest time is closely related to the quality of its medicinal ingredients; however, whether there are differences in the IRDVs harvested at different times has yet to be explored. Herein, we analyzed the morphology and chemical composition of IRDVs collected at different time points and identified six-month-harvested IRDVs as the most suitable delivery vector. To further enhance their therapeutic potential, we modified the IRDVs with deoxycholic acid to facilitate the oral delivery of the chemotherapy drug doxorubicin (DOX). This novel nanotherapy, termed DOX-IRDVs@DA, was developed as an oral targeted treatment for colitis-associated cancer (CAC). The results demonstrated that DOX-IRDVs@DA effectively delivered DOX to colon tumor 26 (CT26) cells, induced cancer cell apoptosis by modulating apoptosis-related proteins, and inhibited the proliferation of CT26 cells. In vivo studies in a mouse model of CAC revealed that DOX-IRDVs@DA achieved superior targeted therapeutic effects, reducing the number of colonic nodules, restoring the structural integrity of the colon, and causing minimal systemic toxicity.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2653-2663"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived extracellular vesicles are of great significance in practical applications due to their availability, low immunogenicity, and effective carrier performance. Isodon rubescens-derived vesicles (IRDVs) not only have the capability for drug-carrying targeted therapy but also exhibit certain anti-inflammatory and antitumor effects as part of traditional Chinese medicine. The harvest time is closely related to the quality of its medicinal ingredients; however, whether there are differences in the IRDVs harvested at different times has yet to be explored. Herein, we analyzed the morphology and chemical composition of IRDVs collected at different time points and identified six-month-harvested IRDVs as the most suitable delivery vector. To further enhance their therapeutic potential, we modified the IRDVs with deoxycholic acid to facilitate the oral delivery of the chemotherapy drug doxorubicin (DOX). This novel nanotherapy, termed DOX-IRDVs@DA, was developed as an oral targeted treatment for colitis-associated cancer (CAC). The results demonstrated that DOX-IRDVs@DA effectively delivered DOX to colon tumor 26 (CT26) cells, induced cancer cell apoptosis by modulating apoptosis-related proteins, and inhibited the proliferation of CT26 cells. In vivo studies in a mouse model of CAC revealed that DOX-IRDVs@DA achieved superior targeted therapeutic effects, reducing the number of colonic nodules, restoring the structural integrity of the colon, and causing minimal systemic toxicity.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture