Microfluidics-driven templating preparation of polymer vesicles with tailorable dimensions and rapid cellular internalization†

IF 5.7 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Donghua Dong, Tong Zhu, Guoxing Liao, Fangrong Tan, Lei Chen, Qianqian Yu and LinGe Wang
{"title":"Microfluidics-driven templating preparation of polymer vesicles with tailorable dimensions and rapid cellular internalization†","authors":"Donghua Dong, Tong Zhu, Guoxing Liao, Fangrong Tan, Lei Chen, Qianqian Yu and LinGe Wang","doi":"10.1039/D5BM00377F","DOIUrl":null,"url":null,"abstract":"<p >Polymer vesicles hold immense potential in biomedicine and nanotechnology, yet conventional rehydration methods face critical limitations in controlling the vesicle architecture due to stochastic block copolymer (BCP) self-assembly. Here, we present a first-reported microsphere-templated strategy that synergizes microfluidic precision with BCP assembly to overcome these constraints. By engineering emulsion templates <em>via</em> flow rate, BCP concentration and collection distance optimization, we established a method based on the radius-square law governing the evolution of uniform vesicles (size range diameter: 70–170 nm, PDI: 0.16), enabling on-demand size tuning, a capability unattainable with traditional approaches. Multi-scale characterization (DLS, OM, SEM and TEM) elucidates the non-equilibrium templating-to-vesicle transition, revealing critical dynamics of BCP film reorganization. The resultant nano-scale vesicles exhibit rapid cellular uptake (&gt;95% in 3 h) by HUVECs and 4T1 cells with exceptional biocompatibility (&gt;85% viability, 36 h), outperforming many cytotoxic counterparts. This work not only provides a scalable platform for precision vesicle fabrication but also establishes foundational principles for templated self-assembly, bridging microfluidics and soft matter science. Our methodology opens avenues for tailored vesicles in drug delivery, nanoreactors and synthetic biology, addressing the persistent demand for functionally adaptive polymeric nanostructures.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 11","pages":" 2925-2935"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00377f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer vesicles hold immense potential in biomedicine and nanotechnology, yet conventional rehydration methods face critical limitations in controlling the vesicle architecture due to stochastic block copolymer (BCP) self-assembly. Here, we present a first-reported microsphere-templated strategy that synergizes microfluidic precision with BCP assembly to overcome these constraints. By engineering emulsion templates via flow rate, BCP concentration and collection distance optimization, we established a method based on the radius-square law governing the evolution of uniform vesicles (size range diameter: 70–170 nm, PDI: 0.16), enabling on-demand size tuning, a capability unattainable with traditional approaches. Multi-scale characterization (DLS, OM, SEM and TEM) elucidates the non-equilibrium templating-to-vesicle transition, revealing critical dynamics of BCP film reorganization. The resultant nano-scale vesicles exhibit rapid cellular uptake (>95% in 3 h) by HUVECs and 4T1 cells with exceptional biocompatibility (>85% viability, 36 h), outperforming many cytotoxic counterparts. This work not only provides a scalable platform for precision vesicle fabrication but also establishes foundational principles for templated self-assembly, bridging microfluidics and soft matter science. Our methodology opens avenues for tailored vesicles in drug delivery, nanoreactors and synthetic biology, addressing the persistent demand for functionally adaptive polymeric nanostructures.

Abstract Image

微流体驱动模板制备具有可定制尺寸和快速细胞内化的聚合物囊泡。
聚合物囊泡在生物医学和纳米技术中具有巨大的潜力,但由于随机嵌段共聚物(BCP)的自组装,传统的补液方法在控制囊泡结构方面面临着严重的限制。在这里,我们提出了一种首次报道的微球模板化策略,该策略将微流体精度与BCP组装协同起来,以克服这些限制。通过优化流速、BCP浓度和收集距离来设计乳液模板,我们建立了一种基于半径平方定律的方法,该方法控制均匀囊泡(粒径范围:70-170 nm, PDI: 0.16)的演化,实现了传统方法无法实现的按需尺寸调整。多尺度表征(DLS, OM, SEM和TEM)阐明了非平衡模板到囊泡的转变,揭示了BCP膜重组的关键动力学。由此产生的纳米级囊泡被HUVECs和4T1细胞快速吸收(3小时内达到95%),具有优异的生物相容性(36小时内达到85%),优于许多细胞毒性对应物。这项工作不仅为精密囊泡制造提供了一个可扩展的平台,而且为模板自组装、桥接微流体和软物质科学建立了基础原理。我们的方法为药物递送、纳米反应器和合成生物学中的定制囊泡开辟了道路,解决了对功能自适应聚合物纳米结构的持续需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信