Jiaquan Hong, Bocheng Xu, Xiaole Hu, Chun Liu, Hongsheng Liu, Jinhuan Tian, Lihua Li, Shan Ding, Changren Zhou, Lu Lu
{"title":"Hyaluronic Acid Microneedles Loaded with Chinese Herbal Extracts as an Intradermal Delivery System for Hair Regeneration.","authors":"Jiaquan Hong, Bocheng Xu, Xiaole Hu, Chun Liu, Hongsheng Liu, Jinhuan Tian, Lihua Li, Shan Ding, Changren Zhou, Lu Lu","doi":"10.1021/acs.biomac.5c00018","DOIUrl":null,"url":null,"abstract":"<p><p>Androgenic alopecia is one of the most common chronic problems for dermatologists worldwide. Some Chinese herbal extracts have been shown to promote hair growth, but the active ingredients are difficult to enter the dermis. Therefore, delivering the active ingredients into the dermis becomes a key factor. Herein, <i>Platycladus orientalis</i> leaf extract (PO-ex) was obtained using ethanol as a solvent, and then hyaluronic acid methacrylate/hyaluronic acid (HAMA/HA) hydrogel was loaded with PO-ex to prepare hyaluronic acid microneedles (PO-ex MN). The double cross-linked HAMA/HA provides sufficient mechanical strength to pierce the stratum corneum and deliver PO-ex into the dermis; PO-ex can effectively improve the environment for hair follicle cell proliferation by removing reactive oxygen free radicals; in addition, the self-repair reaction caused by microneedle mechanical stimulation activates the Wnt/β-catenin pathway associated with trauma repair and promotes hair follicle growth. PO-ex MN is a potential therapeutic strategy for the treatment of androgenic alopecia.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 5","pages":"2945-2959"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00018","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Androgenic alopecia is one of the most common chronic problems for dermatologists worldwide. Some Chinese herbal extracts have been shown to promote hair growth, but the active ingredients are difficult to enter the dermis. Therefore, delivering the active ingredients into the dermis becomes a key factor. Herein, Platycladus orientalis leaf extract (PO-ex) was obtained using ethanol as a solvent, and then hyaluronic acid methacrylate/hyaluronic acid (HAMA/HA) hydrogel was loaded with PO-ex to prepare hyaluronic acid microneedles (PO-ex MN). The double cross-linked HAMA/HA provides sufficient mechanical strength to pierce the stratum corneum and deliver PO-ex into the dermis; PO-ex can effectively improve the environment for hair follicle cell proliferation by removing reactive oxygen free radicals; in addition, the self-repair reaction caused by microneedle mechanical stimulation activates the Wnt/β-catenin pathway associated with trauma repair and promotes hair follicle growth. PO-ex MN is a potential therapeutic strategy for the treatment of androgenic alopecia.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.