Scaling Organic Electrosynthesis: The Crucial Interplay between Mechanism and Mass Transport.

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Central Science Pub Date : 2025-02-11 eCollection Date: 2025-04-23 DOI:10.1021/acscentsci.4c01733
Zachary J Oliver, Dylan J Abrams, Luana Cardinale, Chih-Jung Chen, Gregory L Beutner, Seb Caille, Benjamin Cohen, Lin Deng, Moiz Diwan, Michael O Frederick, Kaid Harper, Joel M Hawkins, Dan Lehnherr, Christine Lucky, Alex Meyer, Seonmyeong Noh, Diego Nunez, Kyle Quasdorf, Jaykumar Teli, Shannon S Stahl, Marcel Schreier
{"title":"Scaling Organic Electrosynthesis: The Crucial Interplay between Mechanism and Mass Transport.","authors":"Zachary J Oliver, Dylan J Abrams, Luana Cardinale, Chih-Jung Chen, Gregory L Beutner, Seb Caille, Benjamin Cohen, Lin Deng, Moiz Diwan, Michael O Frederick, Kaid Harper, Joel M Hawkins, Dan Lehnherr, Christine Lucky, Alex Meyer, Seonmyeong Noh, Diego Nunez, Kyle Quasdorf, Jaykumar Teli, Shannon S Stahl, Marcel Schreier","doi":"10.1021/acscentsci.4c01733","DOIUrl":null,"url":null,"abstract":"<p><p>Organic electrosynthesis opens new avenues of reactivity and promises more sustainable practices in the preparation of fine chemicals and pharmaceuticals. The full value of this approach will be realized by taking these processes to the production scale; however, achieving this goal will require a better understanding of the influence of mass transport on reaction behavior and the interactions between reactive species and electrodes inherent to organic electrosynthesis. The limited options for cell geometries used on small scale limit elucidation of these features. Here, we show how advanced cell geometries allow us to control the interplay between reaction mechanism and mass transport, leading to improved performance of three modern organic electrosynthetic reactions. Each reaction shows a unique relationship with mass transport, highlighting the importance of understanding this relationship further to maximize the utility of organic electrosynthesis at scale.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 4","pages":"528-538"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01733","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic electrosynthesis opens new avenues of reactivity and promises more sustainable practices in the preparation of fine chemicals and pharmaceuticals. The full value of this approach will be realized by taking these processes to the production scale; however, achieving this goal will require a better understanding of the influence of mass transport on reaction behavior and the interactions between reactive species and electrodes inherent to organic electrosynthesis. The limited options for cell geometries used on small scale limit elucidation of these features. Here, we show how advanced cell geometries allow us to control the interplay between reaction mechanism and mass transport, leading to improved performance of three modern organic electrosynthetic reactions. Each reaction shows a unique relationship with mass transport, highlighting the importance of understanding this relationship further to maximize the utility of organic electrosynthesis at scale.

标度有机电合成:机制与质量传递之间的关键相互作用。
有机电合成开辟了新的途径的反应性和承诺更可持续的做法,在精细化学品和药品的制备。这种方法的全部价值将通过将这些过程应用到生产规模中来实现;然而,要实现这一目标,需要更好地理解质量传递对反应行为的影响,以及有机电合成中固有的反应物质和电极之间的相互作用。在小尺度上使用的有限的细胞几何形状限制了这些特征的阐明。在这里,我们展示了先进的细胞几何形状如何使我们能够控制反应机制和质量传递之间的相互作用,从而提高了三种现代有机电合成反应的性能。每种反应都显示出与质量传递的独特关系,强调了进一步理解这种关系以最大化有机电合成在规模上的效用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信