Mina Vaez, Marianne Odlyha, Sumaiya Farzana, Patrick C Lee, Boris Hinz, Laurent Bozec
{"title":"Glycated Cross-Linked Collagen Membranes with Tunable Permeability and Multifunctional Properties for Tissue Regeneration.","authors":"Mina Vaez, Marianne Odlyha, Sumaiya Farzana, Patrick C Lee, Boris Hinz, Laurent Bozec","doi":"10.1021/acsbiomaterials.5c00120","DOIUrl":null,"url":null,"abstract":"<p><p>Interface tissue engineering focuses on developing bioengineered constructs that integrate with the body's natural tissues. Collagen-based membranes, due to their inherent bioactivity and compatibility, are widely used in tissue engineering applications such as wound healing, guided tissue regeneration, and guided bone regeneration. This study investigates the <i>in vitro</i> development and characterization of methylglyoxal (MGO)-cross-linked collagen membranes, which exhibit enhanced mechanical strength, thermal stability, hydrophilicity, and tunable permeability. To evaluate the properties of these membranes, we employed several techniques, including scanning electron microscopy for morphological analysis, differential scanning calorimetry for thermal stability assessment, tensile strength tests for mechanical evaluation, water contact angle measurements for wettability, dielectric analysis for moisture absorption, and permeability assays using fluorescein diffusion. Additionally, the fibroblast barrier function was assessed using a red cell tracking dye with confocal microscopy. The ability to fine-tune the properties of collagen membranes through MGO cross-linking opens new possibilities for their use in tissue engineering. These membranes can serve as effective barriers in guided tissue regeneration and guided bone regeneration, promoting tissue regeneration and healing by preventing undesired cell migration and creating a conducive environment for bone and tissue growth. MGO-cross-linked collagen membranes offer a promising solution for enhancing the functionality and efficacy of bioengineered constructs in tissue engineering. Their improved mechanical and thermal properties, coupled with their biocompatibility, make them ideal candidates for various clinical applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2946-2957"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00120","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Interface tissue engineering focuses on developing bioengineered constructs that integrate with the body's natural tissues. Collagen-based membranes, due to their inherent bioactivity and compatibility, are widely used in tissue engineering applications such as wound healing, guided tissue regeneration, and guided bone regeneration. This study investigates the in vitro development and characterization of methylglyoxal (MGO)-cross-linked collagen membranes, which exhibit enhanced mechanical strength, thermal stability, hydrophilicity, and tunable permeability. To evaluate the properties of these membranes, we employed several techniques, including scanning electron microscopy for morphological analysis, differential scanning calorimetry for thermal stability assessment, tensile strength tests for mechanical evaluation, water contact angle measurements for wettability, dielectric analysis for moisture absorption, and permeability assays using fluorescein diffusion. Additionally, the fibroblast barrier function was assessed using a red cell tracking dye with confocal microscopy. The ability to fine-tune the properties of collagen membranes through MGO cross-linking opens new possibilities for their use in tissue engineering. These membranes can serve as effective barriers in guided tissue regeneration and guided bone regeneration, promoting tissue regeneration and healing by preventing undesired cell migration and creating a conducive environment for bone and tissue growth. MGO-cross-linked collagen membranes offer a promising solution for enhancing the functionality and efficacy of bioengineered constructs in tissue engineering. Their improved mechanical and thermal properties, coupled with their biocompatibility, make them ideal candidates for various clinical applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture