Ellysia N Overton, Yifan Zhang, Wabathi Ngecu, Mohammad R Seyedsayamdost
{"title":"Chemical Synthetic Lethality Screens Identify Selective Drug Combinations against <i>Pseudomonas aeruginosa</i>.","authors":"Ellysia N Overton, Yifan Zhang, Wabathi Ngecu, Mohammad R Seyedsayamdost","doi":"10.1021/acschembio.5c00076","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of bacterial ESKAPE pathogens presents a formidable challenge to global health, necessitating the development of innovative strategies for antibiotic discovery. Here, we leverage chemical synthetic lethality to locate therapeutic combinations of small molecules against multidrug-resistant <i>Pseudomonas aeruginosa</i>. Using a transposon screen, we identify PyrD as a target for sensitizing <i>P. aeruginosa</i> to subinhibitory doses of ceftazidime. High-throughput inhibitor screens identify two PyrD inhibitors, nordihydroguaiaretic acid (NDGA) and chlorhexidine (CHX), each of which does not significantly affect growth in isolation but exhibits chemical synthetic lethality when combined with low-dose ceftazidime. Downstream biochemical studies elucidate the mechanism of inhibition by NDGA and CHX. Remarkably, this combination is toxic to <i>P. aeruginosa</i> but leaves commensal bacteria, which are more susceptible to antibiotics, unscathed. Aside from advancing drug combinations that may be explored further in the future, our results offer a new approach for devising potent and specific drug combinations against recalcitrant pathogens.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"1077-1086"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of bacterial ESKAPE pathogens presents a formidable challenge to global health, necessitating the development of innovative strategies for antibiotic discovery. Here, we leverage chemical synthetic lethality to locate therapeutic combinations of small molecules against multidrug-resistant Pseudomonas aeruginosa. Using a transposon screen, we identify PyrD as a target for sensitizing P. aeruginosa to subinhibitory doses of ceftazidime. High-throughput inhibitor screens identify two PyrD inhibitors, nordihydroguaiaretic acid (NDGA) and chlorhexidine (CHX), each of which does not significantly affect growth in isolation but exhibits chemical synthetic lethality when combined with low-dose ceftazidime. Downstream biochemical studies elucidate the mechanism of inhibition by NDGA and CHX. Remarkably, this combination is toxic to P. aeruginosa but leaves commensal bacteria, which are more susceptible to antibiotics, unscathed. Aside from advancing drug combinations that may be explored further in the future, our results offer a new approach for devising potent and specific drug combinations against recalcitrant pathogens.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.