Severin Lechner, Shuyao Sha, Jigar Paras Sethiya, Patrycja Szczupak, Rafal Dolot, Santosh Lomada, Amirhossein Sakhteman, Johanna Tushaus, Polina Prokofeva, Michael Krauss, Ferdinand Breu, Katharina Vögerl, Martin Morgenstern, Martin Hrabě de Angelis, Volker Haucke, Thomas Wieland, Carston Wagner, Guillaume Médard, Franz Bracher, Bernhard Kuster
{"title":"Serendipitous and Systematic Chemoproteomic Discovery of MBLAC2, HINT1, and NME1-4 Inhibitors from Histone Deacetylase-Targeting Pharmacophores.","authors":"Severin Lechner, Shuyao Sha, Jigar Paras Sethiya, Patrycja Szczupak, Rafal Dolot, Santosh Lomada, Amirhossein Sakhteman, Johanna Tushaus, Polina Prokofeva, Michael Krauss, Ferdinand Breu, Katharina Vögerl, Martin Morgenstern, Martin Hrabě de Angelis, Volker Haucke, Thomas Wieland, Carston Wagner, Guillaume Médard, Franz Bracher, Bernhard Kuster","doi":"10.1021/acschembio.5c00108","DOIUrl":null,"url":null,"abstract":"<p><p>Metalloenzyme inhibitors often incorporate a hydroxamic acid moiety to bind the bivalent metal ion cofactor within the enzyme's active site. Recently, inhibitors of Zn<sup>2+</sup>-dependent histone deacetylases (HDACs), including clinically advanced drugs, have been identified as potent inhibitors of the metalloenzyme MBLAC2. However, selective chemical probes for MBLAC2, which are essential for studying its inhibitory effects, have not yet been reported. To discover highly selective MBLAC2 inhibitors, we conducted chemoproteomic target deconvolution and selectivity profiling of a library of hydroxamic acid-type molecules and other metal-chelating compounds. This screen revealed MBLAC2 as a frequent off-target of supposedly selective HDAC inhibitors, including the HDAC6 inhibitor SW-100. Profiling a focused library of SW-100-related phenylhydroxamic acids led to identifying two compounds, KV-65 and KV-79, which exhibit nanomolar binding affinity for MBLAC2 and over 60-fold selectivity compared to HDACs. Interestingly, some phenylhydroxamic acids were found to bind additional off-targets. We identified KV-30 as the first drug-like inhibitor of the histidine triad nucleotide-binding protein HINT1 and confirmed its mode of inhibition through a cocrystal structure analysis. Furthermore, we report the discovery of the first inhibitors for the undrugged nucleoside diphosphate kinases NME1, NME2, NME3, and NME4. Overall, this study maps the target and off-target landscape of 53 metalloenzyme inhibitors, providing the first selective MBLAC2 inhibitors. Additionally, the discovery of pharmacophores for NME1-4 and HINT1 establishes a foundation for the future design of potent and selective inhibitors for these targets.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metalloenzyme inhibitors often incorporate a hydroxamic acid moiety to bind the bivalent metal ion cofactor within the enzyme's active site. Recently, inhibitors of Zn2+-dependent histone deacetylases (HDACs), including clinically advanced drugs, have been identified as potent inhibitors of the metalloenzyme MBLAC2. However, selective chemical probes for MBLAC2, which are essential for studying its inhibitory effects, have not yet been reported. To discover highly selective MBLAC2 inhibitors, we conducted chemoproteomic target deconvolution and selectivity profiling of a library of hydroxamic acid-type molecules and other metal-chelating compounds. This screen revealed MBLAC2 as a frequent off-target of supposedly selective HDAC inhibitors, including the HDAC6 inhibitor SW-100. Profiling a focused library of SW-100-related phenylhydroxamic acids led to identifying two compounds, KV-65 and KV-79, which exhibit nanomolar binding affinity for MBLAC2 and over 60-fold selectivity compared to HDACs. Interestingly, some phenylhydroxamic acids were found to bind additional off-targets. We identified KV-30 as the first drug-like inhibitor of the histidine triad nucleotide-binding protein HINT1 and confirmed its mode of inhibition through a cocrystal structure analysis. Furthermore, we report the discovery of the first inhibitors for the undrugged nucleoside diphosphate kinases NME1, NME2, NME3, and NME4. Overall, this study maps the target and off-target landscape of 53 metalloenzyme inhibitors, providing the first selective MBLAC2 inhibitors. Additionally, the discovery of pharmacophores for NME1-4 and HINT1 establishes a foundation for the future design of potent and selective inhibitors for these targets.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.