Varun Sai Tadimarri, Tanya Amit Tyagi, Cao Nguyen Duong, Sari Rasheed, Rolf Müller, Shrikrishnan Sankaran
{"title":"Adaptations of Gram-Negative and Gram-Positive Probiotic Bacteria in Engineered Living Materials.","authors":"Varun Sai Tadimarri, Tanya Amit Tyagi, Cao Nguyen Duong, Sari Rasheed, Rolf Müller, Shrikrishnan Sankaran","doi":"10.1021/acsbiomaterials.5c00325","DOIUrl":null,"url":null,"abstract":"<p><p>Encapsulation of microbes in natural or synthetic matrices is a key aspect of engineered living materials, although the influence of such confinement on microbial behavior is poorly understood. A few recent studies have shown that the spatial confinement and mechanical properties of the encapsulating material significantly influence microbial behavior, including growth, metabolism, and gene expression. However, comparative studies within different bacterial species under identical confinement conditions are limited. In this study, Gram-negative <i>Escherichia coli</i> Nissle 1917 and Gram-positive <i>Lactiplantibacillus plantarum</i> WCFS1 were encapsulated in hydrogel matrices, and their growth, metabolic activity, and recombinant gene expression were examined under varying degrees of hydrogel stiffness, achieved by adjusting the polymer concentration and chemical cross-linking. Both bacteria grow from single cells into confined colonies, but more interestingly, in <i>E. coli</i> gels, mechanical properties influenced colony growth, size, and morphology, whereas this did not occur in <i>L. plantarum</i> gels. However, with both bacteria, increased matrix stiffness led to higher levels of recombinant protein production within the colonies. By measuring metabolic heat from the bacterial gels using the isothermal microcalorimetry technique, it was inferred that <i>E. coli</i> adapts to the mechanical restrictions through multiple metabolic transitions and is significantly affected by the different hydrogel properties. Contrastingly, both of these aspects were not observed with <i>L. plantarum</i>. These results revealed that despite both bacteria being gut-adapted probiotics with similar geometries, mechanical confinement affects them considerably differently. The weaker influence of matrix stiffness on <i>L. plantarum</i> is attributed to its slower growth and thicker cell wall, possibly enabling the generation of higher turgor pressures to overcome restrictive forces under confinement. By providing fundamental insights into the interplay between mechanical forces and bacterial physiology, this work advances our understanding of how matrix properties shape bacterial behavior. The implications of these findings will aid the design of engineered living materials for therapeutic applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00325","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Encapsulation of microbes in natural or synthetic matrices is a key aspect of engineered living materials, although the influence of such confinement on microbial behavior is poorly understood. A few recent studies have shown that the spatial confinement and mechanical properties of the encapsulating material significantly influence microbial behavior, including growth, metabolism, and gene expression. However, comparative studies within different bacterial species under identical confinement conditions are limited. In this study, Gram-negative Escherichia coli Nissle 1917 and Gram-positive Lactiplantibacillus plantarum WCFS1 were encapsulated in hydrogel matrices, and their growth, metabolic activity, and recombinant gene expression were examined under varying degrees of hydrogel stiffness, achieved by adjusting the polymer concentration and chemical cross-linking. Both bacteria grow from single cells into confined colonies, but more interestingly, in E. coli gels, mechanical properties influenced colony growth, size, and morphology, whereas this did not occur in L. plantarum gels. However, with both bacteria, increased matrix stiffness led to higher levels of recombinant protein production within the colonies. By measuring metabolic heat from the bacterial gels using the isothermal microcalorimetry technique, it was inferred that E. coli adapts to the mechanical restrictions through multiple metabolic transitions and is significantly affected by the different hydrogel properties. Contrastingly, both of these aspects were not observed with L. plantarum. These results revealed that despite both bacteria being gut-adapted probiotics with similar geometries, mechanical confinement affects them considerably differently. The weaker influence of matrix stiffness on L. plantarum is attributed to its slower growth and thicker cell wall, possibly enabling the generation of higher turgor pressures to overcome restrictive forces under confinement. By providing fundamental insights into the interplay between mechanical forces and bacterial physiology, this work advances our understanding of how matrix properties shape bacterial behavior. The implications of these findings will aid the design of engineered living materials for therapeutic applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture