Aarohi Gupta, Muhammad Aamir Hassan, William Ndugire, Jungmi Park, Sadaf Noor, Harini Nagaraj, Soham Chakraborty, Vincent M Rotello
{"title":"Light-Triggered Bioorthogonal Nanozyme Hydrogels for Prodrug Activation and Treatment of Bacterial Biofilms.","authors":"Aarohi Gupta, Muhammad Aamir Hassan, William Ndugire, Jungmi Park, Sadaf Noor, Harini Nagaraj, Soham Chakraborty, Vincent M Rotello","doi":"10.1021/acsami.5c02074","DOIUrl":null,"url":null,"abstract":"<p><p>Bioorthogonal nanozymes offer in situ activation of pro-dyes and prodrugs using abiotic chemical transformations. Bacterial infections, especially biofilm-associated infections, are extremely difficult to treat due to obstacles such as poor antibiotic penetration and the rising threat of antibiotic resistance. Spatiotemporal control of bioorthogonal catalysis provides a strategy for \"on-demand\" generation of therapeutics, effectively localizing therapeutic action and minimizing side effects. Here, we present the fabrication of visible-light-responsive alginate hydrogel beads embedded with bioorthogonal polyzymes (PZs). Exposure to a 405 nm light induces the reduction of Fe(III) to Fe(II), triggering the dissolution of the <b>PZ</b>-<b>gel</b> beads with concomitant release and activation of the polyzyme. This approach enabled the selective activation of a prodrug of Linezolid, a last-in-line antibiotic for Gram-positive bacterial infections, enabling the targeted eradication of multidrug-resistant<i>Staphylococcus aureus</i> biofilms. Overall, the use of alginate biomaterial along with noninvasive visible light offers a nontoxic platform for spatiotemporal release of antibiotics through bioorthogonal activation.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 18","pages":"26361-26370"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c02074","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioorthogonal nanozymes offer in situ activation of pro-dyes and prodrugs using abiotic chemical transformations. Bacterial infections, especially biofilm-associated infections, are extremely difficult to treat due to obstacles such as poor antibiotic penetration and the rising threat of antibiotic resistance. Spatiotemporal control of bioorthogonal catalysis provides a strategy for "on-demand" generation of therapeutics, effectively localizing therapeutic action and minimizing side effects. Here, we present the fabrication of visible-light-responsive alginate hydrogel beads embedded with bioorthogonal polyzymes (PZs). Exposure to a 405 nm light induces the reduction of Fe(III) to Fe(II), triggering the dissolution of the PZ-gel beads with concomitant release and activation of the polyzyme. This approach enabled the selective activation of a prodrug of Linezolid, a last-in-line antibiotic for Gram-positive bacterial infections, enabling the targeted eradication of multidrug-resistantStaphylococcus aureus biofilms. Overall, the use of alginate biomaterial along with noninvasive visible light offers a nontoxic platform for spatiotemporal release of antibiotics through bioorthogonal activation.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.