Bifunctional Nanostarch against Neuronal Apoptosis via Mitochondria Protection for Ameliorating Ischemic Stroke Injury and Promoting Long-Term Neurological Recovery.
Ji Xia, Jin Huang, Yixiao Yan, Chenxin Jian, Jiansheng He, Nisha Wang, Lei Shi, Qiyang Ding, Hao Tian, Wei Gao
{"title":"Bifunctional Nanostarch against Neuronal Apoptosis via Mitochondria Protection for Ameliorating Ischemic Stroke Injury and Promoting Long-Term Neurological Recovery.","authors":"Ji Xia, Jin Huang, Yixiao Yan, Chenxin Jian, Jiansheng He, Nisha Wang, Lei Shi, Qiyang Ding, Hao Tian, Wei Gao","doi":"10.1021/acsabm.4c02005","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial damage occurs as an initial event following ischemic onset, and the extent of mitochondrial dysfunction is highly correlated to the severity of ischemia-induced cell death. Once appropriate therapeutic interventions are provided, the ischemic tissue can be salvaged, which is of great significance in achieving better neurological outcomes. Herein, we developed a nanosized starch as a targeting nanoplatform, featuring effective blood-brain barrier (BBB) penetration through lactoferrin-mediated transcytosis. Notably, the nanostarch-based delivery of Mdivi-1 and Alda-1 enables controlled release in the acidic lysosome of neurons, effectively inhibiting the pathological mitochondrial fission and metabolizing toxic aldehydes, thereby creating protective effects on maintaining mitochondrial function. Moreover, we demonstrated that mitochondrial protection induces a transition from activated pro-death responses to a pro-survival state by reducing the release of pro-apoptotic proteins, significantly contributing to the long-term recovery of neurological function. Overall, our nanostarch provided an in-depth understanding of the delivery of mitochondrial protectants and underscored the potential and utility of mitochondrial protection for ischemic stroke via minimizing neuronal apoptosis.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"3833-3844"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c02005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial damage occurs as an initial event following ischemic onset, and the extent of mitochondrial dysfunction is highly correlated to the severity of ischemia-induced cell death. Once appropriate therapeutic interventions are provided, the ischemic tissue can be salvaged, which is of great significance in achieving better neurological outcomes. Herein, we developed a nanosized starch as a targeting nanoplatform, featuring effective blood-brain barrier (BBB) penetration through lactoferrin-mediated transcytosis. Notably, the nanostarch-based delivery of Mdivi-1 and Alda-1 enables controlled release in the acidic lysosome of neurons, effectively inhibiting the pathological mitochondrial fission and metabolizing toxic aldehydes, thereby creating protective effects on maintaining mitochondrial function. Moreover, we demonstrated that mitochondrial protection induces a transition from activated pro-death responses to a pro-survival state by reducing the release of pro-apoptotic proteins, significantly contributing to the long-term recovery of neurological function. Overall, our nanostarch provided an in-depth understanding of the delivery of mitochondrial protectants and underscored the potential and utility of mitochondrial protection for ischemic stroke via minimizing neuronal apoptosis.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.