Roser Montagud-Martínez, Rosa Márquez-Costa, Raúl Ruiz, Adrià Martínez-Aviñó, Rafael Ballesteros-Garrido, David Navarro, Pilar Campins-Falcó, Guillermo Rodrigo
{"title":"Virus Detection by CRISPR-Cas9-Mediated Strand Displacement in a Lateral Flow Assay.","authors":"Roser Montagud-Martínez, Rosa Márquez-Costa, Raúl Ruiz, Adrià Martínez-Aviñó, Rafael Ballesteros-Garrido, David Navarro, Pilar Campins-Falcó, Guillermo Rodrigo","doi":"10.1021/acsabm.5c00307","DOIUrl":null,"url":null,"abstract":"<p><p>In public health emergencies or in resource-constrained settings, laboratory-based diagnostic methods, such as RT-qPCR, need to be complemented with accurate, rapid, and accessible approaches to increase testing capacity, as this will translate into better outcomes in disease prevention and management. Here, we develop an original nucleic acid detection platform by leveraging CRISPR-Cas9 and lateral flow immunochromatography technologies. In combination with an isothermal amplification that runs with a biotinylated primer, the system exploits the interaction between the CRISPR-Cas9 R-loop formed upon targeting a specific nucleic acid and a fluorescein-labeled probe to generate a visual readout on a lateral flow device. Our method enables rapid, sensitive detection of nucleic acids, achieving a limit of 1-10 copies/μL in 1 h at a low temperature. We validated the efficacy of the method by using clinical samples of patients infected with SARS-CoV-2. Compared with other assays, it operates with more accessible molecular elements and showcases a robust signal-to-noise ratio. Moreover, multiplexed detection was demonstrated using primers labeled with biotin and digoxigenin, achieving the simultaneous identification of target genes on lateral flow devices with two test lines. We successfully detected SARS-CoV-2 and Influenza A (H1N1) in spiked samples, highlighting the potential of the method for multiplexed diagnostics of respiratory viruses. All in all, this represents a versatile and manageable platform for point-of-care testing, thereby supporting better patient outcomes and enhanced pandemic preparedness.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"4221-4229"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In public health emergencies or in resource-constrained settings, laboratory-based diagnostic methods, such as RT-qPCR, need to be complemented with accurate, rapid, and accessible approaches to increase testing capacity, as this will translate into better outcomes in disease prevention and management. Here, we develop an original nucleic acid detection platform by leveraging CRISPR-Cas9 and lateral flow immunochromatography technologies. In combination with an isothermal amplification that runs with a biotinylated primer, the system exploits the interaction between the CRISPR-Cas9 R-loop formed upon targeting a specific nucleic acid and a fluorescein-labeled probe to generate a visual readout on a lateral flow device. Our method enables rapid, sensitive detection of nucleic acids, achieving a limit of 1-10 copies/μL in 1 h at a low temperature. We validated the efficacy of the method by using clinical samples of patients infected with SARS-CoV-2. Compared with other assays, it operates with more accessible molecular elements and showcases a robust signal-to-noise ratio. Moreover, multiplexed detection was demonstrated using primers labeled with biotin and digoxigenin, achieving the simultaneous identification of target genes on lateral flow devices with two test lines. We successfully detected SARS-CoV-2 and Influenza A (H1N1) in spiked samples, highlighting the potential of the method for multiplexed diagnostics of respiratory viruses. All in all, this represents a versatile and manageable platform for point-of-care testing, thereby supporting better patient outcomes and enhanced pandemic preparedness.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.