Enhanced Osteogenic Activity of a Titanium Mesh Modified with Magnesium-Doped Nanowires for Peri-Implant Guided Bone Regeneration: In Vitro and In Vivo.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhe Shen, Ya-Wen Zhu, Yu-Wen Wei, You Zhou, Yan Xu, Wei Chen, Jing Qiu
{"title":"Enhanced Osteogenic Activity of a Titanium Mesh Modified with Magnesium-Doped Nanowires for Peri-Implant Guided Bone Regeneration: In Vitro and In Vivo.","authors":"Zhe Shen, Ya-Wen Zhu, Yu-Wen Wei, You Zhou, Yan Xu, Wei Chen, Jing Qiu","doi":"10.1021/acsbiomaterials.4c01854","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium mesh is a promising barrier membrane for the reconstruction of alveolar bone defects, with the quality and volume of alveolar bone being critical factors impacting the initial stability and success rate of implants. The objective of this study is to integrate bioactive magnesium ions and nanowire structures into a titanium mesh surface (Mg-NW-Ti) and further investigate its surface characteristics and osteogenic bioactivity in vitro and in vivo. Mg-NW-Ti was effectively synthesized through a series of chemical reactivity tests, and its morphology, roughness, hydrophilicity, elemental composition, and ion release were characterized. The biological effects of Mg-NW-Ti on MC3T3-E1 cells were assessed and compared with commercially pure titanium (CP-Ti) and nanowire-modified titanium (NW-Ti). In addition, a peri-implant bone defect model of rabbit mandibular alveolar bone was constructed to evaluate the effects of Mg-NW-Ti mesh on bone regeneration and osseointegration of the implant. The resultant Ti surface appeared as a nanowire structure under scanning electron microscopy with higher surface roughness and hydrophilicity compared to the CP-Ti. The X-ray photoelectron spectroscopy and ion release analysis demonstrated successful loading of magnesium ions onto the titanium surface and effective release into the surroundings. In vitro Mg-NW-Ti exhibited good biocompatibility and significantly enhanced proliferation and differentiation of MC3T3-E1, while the results of the in vivo study demonstrated that the Mg-NW-Ti mesh exhibited a beneficial impact on bone regeneration and implant osseointegration. In conclusion, this novel surface modification of titanium mesh may serve as an effective strategy for optimizing the osteogenic functionality of titanium mesh and harnessing its potential for increased application value.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2664-2676"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01854","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium mesh is a promising barrier membrane for the reconstruction of alveolar bone defects, with the quality and volume of alveolar bone being critical factors impacting the initial stability and success rate of implants. The objective of this study is to integrate bioactive magnesium ions and nanowire structures into a titanium mesh surface (Mg-NW-Ti) and further investigate its surface characteristics and osteogenic bioactivity in vitro and in vivo. Mg-NW-Ti was effectively synthesized through a series of chemical reactivity tests, and its morphology, roughness, hydrophilicity, elemental composition, and ion release were characterized. The biological effects of Mg-NW-Ti on MC3T3-E1 cells were assessed and compared with commercially pure titanium (CP-Ti) and nanowire-modified titanium (NW-Ti). In addition, a peri-implant bone defect model of rabbit mandibular alveolar bone was constructed to evaluate the effects of Mg-NW-Ti mesh on bone regeneration and osseointegration of the implant. The resultant Ti surface appeared as a nanowire structure under scanning electron microscopy with higher surface roughness and hydrophilicity compared to the CP-Ti. The X-ray photoelectron spectroscopy and ion release analysis demonstrated successful loading of magnesium ions onto the titanium surface and effective release into the surroundings. In vitro Mg-NW-Ti exhibited good biocompatibility and significantly enhanced proliferation and differentiation of MC3T3-E1, while the results of the in vivo study demonstrated that the Mg-NW-Ti mesh exhibited a beneficial impact on bone regeneration and implant osseointegration. In conclusion, this novel surface modification of titanium mesh may serve as an effective strategy for optimizing the osteogenic functionality of titanium mesh and harnessing its potential for increased application value.

掺镁纳米线修饰钛网在种植体周围引导骨再生中的增强成骨活性:体外和体内。
钛网是一种很有前途的牙槽骨缺损修复屏障膜,牙槽骨的质量和体积是影响种植体初始稳定性和成功率的关键因素。本研究的目的是将生物活性镁离子和纳米线结构整合到钛网表面(Mg-NW-Ti),并进一步研究其表面特性和体外和体内成骨生物活性。通过一系列的化学反应性测试,有效地合成了Mg-NW-Ti,并对其形貌、粗糙度、亲水性、元素组成和离子释放进行了表征。研究了Mg-NW-Ti对MC3T3-E1细胞的生物学效应,并与市售纯钛(CP-Ti)和纳米线修饰钛(NW-Ti)进行了比较。构建兔下颌牙槽骨种植体周围骨缺损模型,评价Mg-NW-Ti补片对种植体骨再生和骨整合的影响。在扫描电镜下,所得Ti表面呈现纳米线结构,与CP-Ti相比具有更高的表面粗糙度和亲水性。x射线光电子能谱和离子释放分析表明,镁离子成功加载到钛表面并有效释放到周围环境中。Mg-NW-Ti在体外具有良好的生物相容性,可显著促进MC3T3-E1的增殖和分化,而体内研究结果表明Mg-NW-Ti补片对骨再生和种植体骨整合具有有益的影响。综上所述,这种新型的钛网表面改性可以作为优化钛网成骨功能和利用其潜在的应用价值的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信