{"title":"Advanced Strategies in Enhancing the Hepatoprotective Efficacy of Natural Products: Integrating Nanotechnology, Genomics, and Mechanistic Insights.","authors":"Jitendra Patel, Harekrishna Roy, Pavan Kuma Chintamaneni, Rukmani Patel, Raghvendra Bohara","doi":"10.1021/acsbiomaterials.5c00004","DOIUrl":null,"url":null,"abstract":"<p><p>Liver disorders like hepatitis, cirrhosis, and hepatocellular carcinoma present a significant global health challenge, with high morbidity and mortality rates. Key factors contributing to liver disorders include inflammation, oxidative stress, and apoptosis. Due to their multifaceted action, natural compounds are promising candidates for mitigating liver-related disorders. Research studies revealed the antioxidant, anti-inflammatory, and detoxifying properties of natural compounds like curcumin, glycyrrhizin, and silymarin and their potential for liver detoxification and protection. With advancements in nanotechnology in drug delivery, natural compounds have improved stability and targetability, thereby enhancing their bioavailability and therapeutic efficiency. Further, recent advancements in genomics and an increased understanding of genetic factors influencing liver disorders and the hepatoprotective effects of natural agents made way for personalized medicine. Moreover, combinatorial therapy with natural products, synthetic drugs, or other natural agents has improved therapeutic outcomes. Even though clinical trials have confirmed the efficiency of natural compounds as hepatoprotective agents, several challenges remain unanswered in their translation to clinical practice. Therefore, it is logical to integrate natural compounds with nanotechnology and genomics to further advance hepatoprotection. This review gives an overview of the substantial progress made in the field of hepatoprotection, with specific emphasis on natural compounds and their integration with nanotechnology and genomics. This provides valuable insights for future research and innovations in developing therapeutic strategies for liver disorders.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 5","pages":"2528-2549"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Liver disorders like hepatitis, cirrhosis, and hepatocellular carcinoma present a significant global health challenge, with high morbidity and mortality rates. Key factors contributing to liver disorders include inflammation, oxidative stress, and apoptosis. Due to their multifaceted action, natural compounds are promising candidates for mitigating liver-related disorders. Research studies revealed the antioxidant, anti-inflammatory, and detoxifying properties of natural compounds like curcumin, glycyrrhizin, and silymarin and their potential for liver detoxification and protection. With advancements in nanotechnology in drug delivery, natural compounds have improved stability and targetability, thereby enhancing their bioavailability and therapeutic efficiency. Further, recent advancements in genomics and an increased understanding of genetic factors influencing liver disorders and the hepatoprotective effects of natural agents made way for personalized medicine. Moreover, combinatorial therapy with natural products, synthetic drugs, or other natural agents has improved therapeutic outcomes. Even though clinical trials have confirmed the efficiency of natural compounds as hepatoprotective agents, several challenges remain unanswered in their translation to clinical practice. Therefore, it is logical to integrate natural compounds with nanotechnology and genomics to further advance hepatoprotection. This review gives an overview of the substantial progress made in the field of hepatoprotection, with specific emphasis on natural compounds and their integration with nanotechnology and genomics. This provides valuable insights for future research and innovations in developing therapeutic strategies for liver disorders.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture