Sebastian Mandel, Thomas Hanke, Sebastian Mathea, Deep Chatterjee, Hayuningbudi Saraswati, Benedict-Tilman Berger, Martin Peter Schwalm, Satoshi Yamamoto, Michiko Tawada, Terufumi Takagi, Mahmood Ahmed, Sandra Röhm, Ana Corrionero, Patricia Alfonso, Maria Baena, Lewis Elson, Amelie Menge, Andreas Krämer, Raquel Pereira, Susanne Müller, Daniela S Krause, Stefan Knapp
{"title":"Repurposing of the RIPK1-Selective Benzo[1,4]oxazepin-4-one Scaffold for the Development of a Type III LIMK1/2 Inhibitor.","authors":"Sebastian Mandel, Thomas Hanke, Sebastian Mathea, Deep Chatterjee, Hayuningbudi Saraswati, Benedict-Tilman Berger, Martin Peter Schwalm, Satoshi Yamamoto, Michiko Tawada, Terufumi Takagi, Mahmood Ahmed, Sandra Röhm, Ana Corrionero, Patricia Alfonso, Maria Baena, Lewis Elson, Amelie Menge, Andreas Krämer, Raquel Pereira, Susanne Müller, Daniela S Krause, Stefan Knapp","doi":"10.1021/acschembio.5c00097","DOIUrl":null,"url":null,"abstract":"<p><p>Benzoxazepinones have been extensively studied as exclusively selective RIP kinase 1 inhibitors. This scaffold binds to an allosteric pocket created by an αC-out/DFG-out conformation. This inactive conformation results in a large expansion of the kinase back pocket, a conformation that has also been reported for LIM kinases. Scaffold hopping is common in the design of orthosteric kinase inhibitors but has not been explored in the design of allosteric inhibitors, mainly due to the typically exclusive selectivity of type III inhibitors. Here, we hypothesized that the shared structural properties of LIMKs and RIPKs could lead to novel type III LIMK inhibitors using the benzoxazepinone scaffold. We report the discovery of a novel LIMK1/2 inhibitor that relies on this scaffold-based approach. The discovered compound <b>10</b> showed low nanomolar potency on LIMK1/2 and exceptional selectivity, as confirmed by a comprehensive selectivity panel with residual RIPK activity as the only off-target. The study provides one of the few examples for scaffold hopping for allosteric inhibitors, which are usually associated with exclusive target selectivity.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"1087-1098"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.5c00097","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Benzoxazepinones have been extensively studied as exclusively selective RIP kinase 1 inhibitors. This scaffold binds to an allosteric pocket created by an αC-out/DFG-out conformation. This inactive conformation results in a large expansion of the kinase back pocket, a conformation that has also been reported for LIM kinases. Scaffold hopping is common in the design of orthosteric kinase inhibitors but has not been explored in the design of allosteric inhibitors, mainly due to the typically exclusive selectivity of type III inhibitors. Here, we hypothesized that the shared structural properties of LIMKs and RIPKs could lead to novel type III LIMK inhibitors using the benzoxazepinone scaffold. We report the discovery of a novel LIMK1/2 inhibitor that relies on this scaffold-based approach. The discovered compound 10 showed low nanomolar potency on LIMK1/2 and exceptional selectivity, as confirmed by a comprehensive selectivity panel with residual RIPK activity as the only off-target. The study provides one of the few examples for scaffold hopping for allosteric inhibitors, which are usually associated with exclusive target selectivity.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.