Suzanne Willems, Lejla Maksumic, Janina Niggenaber, Tzu-Chen Lin, Tom Schulz, Jörn Weisner, Sonja Sievers, Matthias P Müller, Daniel Summerer, Daniel Rauh
{"title":"Advancing TET Inhibitor Development: From Structural Insights to Biological Evaluation.","authors":"Suzanne Willems, Lejla Maksumic, Janina Niggenaber, Tzu-Chen Lin, Tom Schulz, Jörn Weisner, Sonja Sievers, Matthias P Müller, Daniel Summerer, Daniel Rauh","doi":"10.1021/acsmedchemlett.5c00042","DOIUrl":null,"url":null,"abstract":"<p><p>Ten-eleven translocation (TET) methylcytosine dioxygenases are part of the epigenetic regulatory machinery that erases DNA methylation. Aberrant TET activities are frequently found in hematopoietic malignancies, where loss of TET2 function leads to DNA hypermethylation. A comprehensive understanding of the biological role of TETs is essential to elucidate disease pathogenesis and identify novel therapeutic strategies. We present a robust pipeline integrating protein X-ray crystallography, molecular modeling, and pharmacophore analysis to advance the current TET inhibitor development. In addition, we have synthesized and evaluated a series of 8-hydroxyquinoline (8-HQ) derivatives, demonstrating their potential as chemical tools to explore TET function further. These findings lay the groundwork for a TET-centered therapeutic approach.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 5","pages":"804-810"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.5c00042","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ten-eleven translocation (TET) methylcytosine dioxygenases are part of the epigenetic regulatory machinery that erases DNA methylation. Aberrant TET activities are frequently found in hematopoietic malignancies, where loss of TET2 function leads to DNA hypermethylation. A comprehensive understanding of the biological role of TETs is essential to elucidate disease pathogenesis and identify novel therapeutic strategies. We present a robust pipeline integrating protein X-ray crystallography, molecular modeling, and pharmacophore analysis to advance the current TET inhibitor development. In addition, we have synthesized and evaluated a series of 8-hydroxyquinoline (8-HQ) derivatives, demonstrating their potential as chemical tools to explore TET function further. These findings lay the groundwork for a TET-centered therapeutic approach.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.