Pixelation of perovskite quantum wire thin films with 0.18-μm features and 63,500-ppi pixel density

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qianpeng Zhang, Xiaofei Sun, Guanyu Chen, Zichao Ma, Daquan Zhang, Yu Zhou, Xiao Qiu, Beitao Ren, Yucheng Ding, Swapnadeep Poddar, Wenying Tang, Hualiang Lv, Xiaoliang Mo, Zhiyong Fan
{"title":"Pixelation of perovskite quantum wire thin films with 0.18-μm features and 63,500-ppi pixel density","authors":"Qianpeng Zhang,&nbsp;Xiaofei Sun,&nbsp;Guanyu Chen,&nbsp;Zichao Ma,&nbsp;Daquan Zhang,&nbsp;Yu Zhou,&nbsp;Xiao Qiu,&nbsp;Beitao Ren,&nbsp;Yucheng Ding,&nbsp;Swapnadeep Poddar,&nbsp;Wenying Tang,&nbsp;Hualiang Lv,&nbsp;Xiaoliang Mo,&nbsp;Zhiyong Fan","doi":"10.1126/sciadv.adu3840","DOIUrl":null,"url":null,"abstract":"<div >Halide perovskite materials excel in broad optoelectronic applications, and there is an urgent demand to develop perovskite-based integrated optoelectronic devices. However, the limitations posed by the incompatibility of perovskite thin film with wet lithography greatly hinder its potential in many important applications, including ultrahigh-density displays, high-resolution image sensors, high-density memristors, and integrated photonic circuitry. To tackle this bottleneck problem, we develop the self-aligned close-spaced sublimation growth of perovskite quantum wires and demonstrate 0.18-micrometer feature size perovskite patterns, meanwhile achieving a pixel density of 63,500 pixels per inch, the highest reported for perovskite. We showcase pixelation of perovskite quantum wires with color conversion films, addressing the need for full-color microdisplays. In addition, we demonstrate these films on curved substrates, holding promise for near-eye microdisplays. Processes shown here can also apply to other perovskite devices such as high-resolution displays, image sensing, and memristor arrays.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu3840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu3840","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Halide perovskite materials excel in broad optoelectronic applications, and there is an urgent demand to develop perovskite-based integrated optoelectronic devices. However, the limitations posed by the incompatibility of perovskite thin film with wet lithography greatly hinder its potential in many important applications, including ultrahigh-density displays, high-resolution image sensors, high-density memristors, and integrated photonic circuitry. To tackle this bottleneck problem, we develop the self-aligned close-spaced sublimation growth of perovskite quantum wires and demonstrate 0.18-micrometer feature size perovskite patterns, meanwhile achieving a pixel density of 63,500 pixels per inch, the highest reported for perovskite. We showcase pixelation of perovskite quantum wires with color conversion films, addressing the need for full-color microdisplays. In addition, we demonstrate these films on curved substrates, holding promise for near-eye microdisplays. Processes shown here can also apply to other perovskite devices such as high-resolution displays, image sensing, and memristor arrays.
0.18-μm特征和63,500-ppi像素密度的钙钛矿量子线薄膜的像素化
卤化物钙钛矿材料具有广泛的光电应用前景,开发基于钙钛矿的集成光电器件具有迫切的需求。然而,钙钛矿薄膜与湿式光刻技术的不兼容性极大地阻碍了其在许多重要应用中的潜力,包括超高密度显示器、高分辨率图像传感器、高密度忆阻器和集成光子电路。为了解决这一瓶颈问题,我们开发了钙钛矿量子线的自对准近间隔升华生长,并展示了0.18微米特征尺寸的钙钛矿图案,同时实现了每英寸63,500像素的像素密度,这是钙钛矿报道的最高像素密度。我们用彩色转换薄膜展示了钙钛矿量子线的像素化,解决了对全彩微显示器的需求。此外,我们在曲面基板上展示了这些薄膜,有望用于近眼微显示器。这里展示的工艺也可以应用于其他钙钛矿设备,如高分辨率显示器、图像传感和忆阻器阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信