Stress-engineered ultra-broadband spectrometers

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Gongyuan Zhang, Tom Albrow-Owen, Wenjun Peng, Xin Liang, Xianming Zhang, Pan Wang, Dawei Di, Shurong Dong, Jikui Luo, Guo Wang, Hongfeng Mu, Qian Zhao, Xuhan Guo, Qi Jie Wang, Tawfique Hasan, Zongyin Yang
{"title":"Stress-engineered ultra-broadband spectrometers","authors":"Gongyuan Zhang,&nbsp;Tom Albrow-Owen,&nbsp;Wenjun Peng,&nbsp;Xin Liang,&nbsp;Xianming Zhang,&nbsp;Pan Wang,&nbsp;Dawei Di,&nbsp;Shurong Dong,&nbsp;Jikui Luo,&nbsp;Guo Wang,&nbsp;Hongfeng Mu,&nbsp;Qian Zhao,&nbsp;Xuhan Guo,&nbsp;Qi Jie Wang,&nbsp;Tawfique Hasan,&nbsp;Zongyin Yang","doi":"10.1126/sciadv.adu4225","DOIUrl":null,"url":null,"abstract":"<div >The evolution of miniaturized spectroscopic tools is pivotal for expanding the application of spectral data across scientific, industrial, and consumer domains. Recent advancements in computationally augmented systems have dramatically reduced device form factors toward those compatible with consumer tech integration. However, for a commercial reality, most applications demand operation across visible to short-wave infrared (SWIR) range. In this regard, existing miniaturized devices are either constrained by physical properties; use complex, costly, or unscalable fabrication techniques; or require multiple components to address separate parts of the spectrum. Here, we report on a low-cost, visible to SWIR, miniaturized spectrometer design enabled by a mass-producible, nonlithographic method of engineering planar dispersive elements from widely available plastics. By deforming shape memory epoxies, we encode spectral information, which is processed by a complementary metal oxide semiconductor sensor array and reconstructed via algorithms. This design offers broadband capability from 400 to 1600 nanometers and enables line-scanning spectral imaging, paving the way for affordable spectrometers.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu4225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu4225","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of miniaturized spectroscopic tools is pivotal for expanding the application of spectral data across scientific, industrial, and consumer domains. Recent advancements in computationally augmented systems have dramatically reduced device form factors toward those compatible with consumer tech integration. However, for a commercial reality, most applications demand operation across visible to short-wave infrared (SWIR) range. In this regard, existing miniaturized devices are either constrained by physical properties; use complex, costly, or unscalable fabrication techniques; or require multiple components to address separate parts of the spectrum. Here, we report on a low-cost, visible to SWIR, miniaturized spectrometer design enabled by a mass-producible, nonlithographic method of engineering planar dispersive elements from widely available plastics. By deforming shape memory epoxies, we encode spectral information, which is processed by a complementary metal oxide semiconductor sensor array and reconstructed via algorithms. This design offers broadband capability from 400 to 1600 nanometers and enables line-scanning spectral imaging, paving the way for affordable spectrometers.
应力工程超宽带光谱仪
小型化光谱工具的发展对于扩大光谱数据在科学、工业和消费领域的应用至关重要。最近在计算增强系统方面的进步已经大大减少了设备的外形因素,使其与消费者技术集成相兼容。然而,对于商业现实,大多数应用需要在可见光到短波红外(SWIR)范围内运行。在这方面,现有的小型化设备要么受到物理性质的限制;使用复杂、昂贵或不可扩展的制造技术;或者需要多个组件来处理频谱的不同部分。在这里,我们报告了一种低成本、SWIR可见、小型化的光谱仪设计,这种设计是通过大规模生产的、非光刻的方法实现的,这种方法是从广泛使用的塑料中提取工程平面色散元件。通过形变形状记忆环氧树脂,对光谱信息进行编码,由互补金属氧化物半导体传感器阵列进行处理,并通过算法进行重构。该设计提供400至1600纳米的宽带能力,并支持线扫描光谱成像,为经济实惠的光谱仪铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信