{"title":"Self-positioning microdevices enable adaptable spatial displaying","authors":"Qi Guo, Zeyi Li, Yajie Zhou, Shanshan Zhao, Yaxin Wang, Mingjiang Zhang, Guangen Li, Zhi Tong, Taotao Zhuang, Shu-Hong Yu","doi":"10.1126/sciadv.adv2721","DOIUrl":null,"url":null,"abstract":"<div >Adaptable display with spatial imaging, fostering advancements in extended reality with unconventional form requirements, is indispensable in scientific research, telemedicine, rescue, and space exploration. The adjustable photon spin angular momentum derived from chiral optical materials offer applicative lights for binocular stereo imaging displays, thus allowing an unimaginable immersive experience while maintaining awareness of surroundings. However, current chiral illuminant struggles to obtain adequate electroluminescence asymmetry during power-on display. Here, we present a designed self-positioning strategy to build new flexible spatial displays, integrating numerous multilayered circularly polarized electroluminescent microdevices, for real-time depth information control on the screen. With the devices’ luminescence asymmetry value of up to 1.0 under electro-excitation, we visualize third-dimensional information using our chiral material-integrated tablet. Afterward, combined with a robot, we realize a series of remote human-machine interaction operations based on extended reality conditions. Our adaptable spatial display bridges the gap between virtuality and reality, making pioneering explorations in chiral luminous fields for extended reality and beyond.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv2721","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv2721","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptable display with spatial imaging, fostering advancements in extended reality with unconventional form requirements, is indispensable in scientific research, telemedicine, rescue, and space exploration. The adjustable photon spin angular momentum derived from chiral optical materials offer applicative lights for binocular stereo imaging displays, thus allowing an unimaginable immersive experience while maintaining awareness of surroundings. However, current chiral illuminant struggles to obtain adequate electroluminescence asymmetry during power-on display. Here, we present a designed self-positioning strategy to build new flexible spatial displays, integrating numerous multilayered circularly polarized electroluminescent microdevices, for real-time depth information control on the screen. With the devices’ luminescence asymmetry value of up to 1.0 under electro-excitation, we visualize third-dimensional information using our chiral material-integrated tablet. Afterward, combined with a robot, we realize a series of remote human-machine interaction operations based on extended reality conditions. Our adaptable spatial display bridges the gap between virtuality and reality, making pioneering explorations in chiral luminous fields for extended reality and beyond.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.