Hanxi Zhang, Jiazhen Lv, Hao Wu, Yuhan He, Mengyue Li, Chunhui Wu, Dong Lv, Yiyao Liu, Hong Yang
{"title":"Endogenous/exogenous dual-responsive nanozyme for photothermally enhanced ferroptosis-immune reciprocal synergistic tumor therapy","authors":"Hanxi Zhang, Jiazhen Lv, Hao Wu, Yuhan He, Mengyue Li, Chunhui Wu, Dong Lv, Yiyao Liu, Hong Yang","doi":"10.1126/sciadv.adq3870","DOIUrl":null,"url":null,"abstract":"<div >Apoptosis resistance and immune evasion of tumor cells substantially increase the risk of cancer treatment failure. Here, a multifunctional nanozyme MET-CMS@FeTA (MCMSFT) formulated to induce nonapoptotic ferroptosis and boost immune recognition/attack, where compensatory mechanisms collectively overcome intrinsic tumor therapeutic limitations and improve medical intervention outcomes. Leveraging the multienzyme-like activity of MCMSFT to achieve oxygen generation, hydroxyl radical production, and glutathione depletion promotes hypoxia relief and triggers apoptosis/ferroptosis. Notably, MCMSFT-mediated photothermal therapy (PTT) facilitates direct tumor thermal ablation and offers exogenous heat to accelerate nanocatalytic reactions. Furthermore, PTT/ferroptosis-caused immunogenic cell death favors antitumor immunity initiation. Simultaneously, metformin administration and hypoxia amelioration down-regulate programmed death ligand 1 alleviating immune evasion. Interferon-γ secretion poses positive feedback to ferroptosis, thereby establishing a ferroptosis-immune mutual amplification loop. Antitumor performances illustrate that MCMSFT eliminates primary tumors and suppresses metastasis/rechallenge tumors. Collectively, MCMSFT surmounts the predicament of apoptosis resistance and immune evasion in cancer treatment to acquire more effective and comprehensive therapy efficacy.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq3870","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3870","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Apoptosis resistance and immune evasion of tumor cells substantially increase the risk of cancer treatment failure. Here, a multifunctional nanozyme MET-CMS@FeTA (MCMSFT) formulated to induce nonapoptotic ferroptosis and boost immune recognition/attack, where compensatory mechanisms collectively overcome intrinsic tumor therapeutic limitations and improve medical intervention outcomes. Leveraging the multienzyme-like activity of MCMSFT to achieve oxygen generation, hydroxyl radical production, and glutathione depletion promotes hypoxia relief and triggers apoptosis/ferroptosis. Notably, MCMSFT-mediated photothermal therapy (PTT) facilitates direct tumor thermal ablation and offers exogenous heat to accelerate nanocatalytic reactions. Furthermore, PTT/ferroptosis-caused immunogenic cell death favors antitumor immunity initiation. Simultaneously, metformin administration and hypoxia amelioration down-regulate programmed death ligand 1 alleviating immune evasion. Interferon-γ secretion poses positive feedback to ferroptosis, thereby establishing a ferroptosis-immune mutual amplification loop. Antitumor performances illustrate that MCMSFT eliminates primary tumors and suppresses metastasis/rechallenge tumors. Collectively, MCMSFT surmounts the predicament of apoptosis resistance and immune evasion in cancer treatment to acquire more effective and comprehensive therapy efficacy.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.