Samar M. Syeda, Christopher J. Dunmore, Matthew M. Skinner, Lee R. Berger, Steven E. Churchill, Bernhard Zipfel, Tracy L. Kivell
{"title":"Phalangeal cortical bone distribution reveals different dexterous and climbing behaviors in Australopithecus sediba and Homo naledi","authors":"Samar M. Syeda, Christopher J. Dunmore, Matthew M. Skinner, Lee R. Berger, Steven E. Churchill, Bernhard Zipfel, Tracy L. Kivell","doi":"10.1126/sciadv.adt1201","DOIUrl":null,"url":null,"abstract":"<div >The evolution of the human hand is marked by a transition from a hand primarily used for locomotion to one primarily used for dexterous manipulation. The hand skeletons of Plio-Pleistocene hominins have different mosaics of human-like features associated with enhanced dexterity and ape-like features associated with locomotor hand use. However, the functional relevance of the ape-like features is debated, particularly due to a lack of complete and associated hand remains. Here, we investigate the internal phalangeal cortical structure of the nearly complete <i>Australopithecus sediba</i> MH2 hand and <i>Homo naledi</i> hand 1 to provide both insight into the manual behaviors of these fossil hominins and functional clarity regarding the mosaic features found within their hands. The phalangeal cortical structure demonstrates diversity in Plio-Pleistocene hand use, with <i>A. sediba</i> and <i>H. naledi</i> each indicating different dexterous abilities and different climbing strategies, supporting the functional importance of the ape-like features.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 20","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt1201","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt1201","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of the human hand is marked by a transition from a hand primarily used for locomotion to one primarily used for dexterous manipulation. The hand skeletons of Plio-Pleistocene hominins have different mosaics of human-like features associated with enhanced dexterity and ape-like features associated with locomotor hand use. However, the functional relevance of the ape-like features is debated, particularly due to a lack of complete and associated hand remains. Here, we investigate the internal phalangeal cortical structure of the nearly complete Australopithecus sediba MH2 hand and Homo naledi hand 1 to provide both insight into the manual behaviors of these fossil hominins and functional clarity regarding the mosaic features found within their hands. The phalangeal cortical structure demonstrates diversity in Plio-Pleistocene hand use, with A. sediba and H. naledi each indicating different dexterous abilities and different climbing strategies, supporting the functional importance of the ape-like features.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.